首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 229 毫秒
1.
In order to better understand land application of sewage sludge, the characterization of heavy metals and organic pollutants were investigated in three different sewage sludges in Shanghai City, China. It was found that the total concentrations of Cd in all of sewage sludge and total concentrations of Zn in Jinshan sewage sludge, as well as those ofZn, Cu, and Ni in Taopu sludge are higher than Chinese regulation limit of pollutants for sludge to be used in agriculture. Leachability of rig in all of studied samples and that of Cd in Taopu sewage sludge exceed the limit values of waste solid extraction standard in China legislation. Based on the characteristics for three kinds of sewage sludge, a pot experiment was conducted to investigate the effect of soil amended with Quyang sewage sludge on the accumulation of heavy metalo.by Begonia semperfloreas-hybr; Ophiopogon japonicas (L.F.) Ker-Gaw; Loropetalum chindense-var, rubrum; Dendranthema morifolium; Viola tricolor; A ntirrhinum majas; Buxas radicans Sieb; Viburnum macrocephalum; Osmanthas fragrans Lour; Cinnamomum camphora siebold and Ligustrum lucidum ait. Results showed that 8 species of plant survived in the amended soil, and moreover they flourished as well as those cultivated in the control soil. The heavy metal concentration in plants varied with species, As, Pb, Cd and Cr concentration being the highest in the four herbaceous species studied, particularly in the roots of D. morifolium. These plants, however, did not show accumulator of As, Pb, Cd and Cr. The highest concentration of Ni and Hg was found in the roots ofD. morifolium, followed by the leaves ofB. semperflorens-hybr. Levels of Zn and Cu were much higher in D. morifolium than in the other plant species. D. morifolium accumulated Ni, Hg, Cu and Zn, which may contribute to the decrease of heavy metal contents in the amended soil. Treatment with sewage sludge did not significantly affect the uptake of heavy metals by the L. chindense-var, rubrum, however, it significantly affected the uptake of heavy metals by D. morifolium.  相似文献   

2.
A batch composting study was performed to evaluate the feasibility of co-composting sewage sludge with sodium sulfide and lime (SSL) mixture (Na2S/CaO= 1:1), aiming at reducing the availability of heavy metals in the sludge compost. Sewage sludge with sawdust as a bulking agent was amended with SSL at 3% (w/w, dw), and composted for 15 d in laboratory batch reactors. The four stages of the Tessier sequential extraction method was employed to investigate changes in heavy metal fractions of Cu, Zn, and Ni in sewage sludge composted with SSL. For all the three metals, the mobile fractions, such as, exchangeable and carbonate bound were mainly transformed into low availability fractions (organic matter and sulfide, Fe-Mn oxides bound and residual forms), and the addition of SSL enhanced this transformation. Therefore, SSL is a suitable material to co-compost with sewage sludge to reduce the availability of heavy metals. According to the cabbage seed germination test, a SSL amendment of ≤3% (w/w, dw) is recommended to co-compost with sewage sludge.  相似文献   

3.
Low organic matter content and high heavy metal levels severely inhibit the anaerobic digestion (AD) of sewage sludge. In this study, the effect of added manganese oxide-modified biochar composite (MBC) on methane production and heavy metal fractionation during sewage sludge AD was examined. The MBC could increase the buffering capacity, enhance the methane production and degradation of intermediate acids, buffer the pH of the culture, and stabilize the sewage sludge AD process. The application of MBC positively impacted methane production and the cumulative methane yield increased up to 121.97%, as compared with the control. The MBC addition can improve metal stabilization in the digestate. An optimum MBC dose of 2.36?g was recommended, which would produce up to 121.1?L/kg volatile solids of methane. After the AD process, even though most of the metals accumulated in the residual solids, they could be transformation from the bio-available fractions to a more stable fraction. The total organic- and sulfide-bound and residual fraction content at a 3?g dose of MBC that is 0.12?g/g dry matter were 51.06% and 35.11% higher than the control, respectively. The results indicated that the application of MBC could improve the performance of AD and promote stabilization of heavy metals in sewage sludge post the AD process.  相似文献   

4.
Toxicity characteristic leaching procedure(TCLP) of zinc plating sludge was carried out to assess the leaching potential of the sludge and the leachates were analyzed for heavy metals. The concentration of zinc, chromium, and lead in the leachate were 371.5 mg/L, 1.95 mg/L and 1.99 mg/L respectively. Solidification of zinc sludge was carried out using four different binder systems consisting of cement mortar, fly ash, clay and lime and cured for 28 d, The ratio of sludge added varied from 60% to 80% by volume. The solidified products were tested for metal fixing efficiency and physical strength. It was observed that the volume of sludge added that resulted in maximum metal stabilization was 60% for all the combinations, above which the metal fixation efficiency decreased resulting in high values of zinc in the leachate. Addition of 5% sodium silicate enhanced the chemical fixation of metals in all the binder systems. Among the four fixing agents studied, mixture of fly ash: lime, and cement mortar: lime stabilized zinc and other metals in the sludge effectively than other combinations. Addition of lime increased the stabilization of zinc whereas cement mortar increased the strength of the solidified product.  相似文献   

5.
Changes of Cu, Zn, and Cd speciation in sewage sludge during composting   总被引:6,自引:0,他引:6  
The potential toxicity risks from heavy metals depend on their chemical speciation. The four stages of the Tessier sequential extraction method were employed to investigate changes in heavy metal speciation (Cu, Zn, and Cd) of sewage sludge during forced aeration composting, and then to identify whether the composting process would reduce or enhance their toxicities. Throughout the composting process, the exchangeable, carbonate-bound, Fe-Mn oxide-bound, and organic matter-bound fractions of Cu were converted to the residual Cu fraction. The organic matter-bound Cu fraction greatly contributed to this transformation. Residual Zn fraction was transformed to the Fe-Mn oxide-bound and organic matter-bound fractions after composting. The residual Zn fraction was a major contributor to the organic matter-bound Zn fraction. The availability of Cu and Zn was reduced by composting such that the risk of heavy metal toxicity decreased with prolonged treatment times. Additionally, attention should be paid to the increased availability of Cd in sewage sludge after composting treatment.  相似文献   

6.
The bacterial community structures in two sewage treatment plants with different processes and performance were investigated by denaturing gradient gel electrophoresis (DGGE) of nested polymerase chain reaction (nested PCR) amplified 16S rRNA gene fragments with group-specific primers. Samples of raw sewage and treated effluents were amplified using the whole-cell PCR method, and the activated sludge samples were amplified using the extracted genomic DNA before the PCR products were loaded on the same DGGE gel for bacterial community analysis. Ammonia-oxidizing bacterial and actinomycetic community analysis were also carried out to investigate the relationship between specific population structures and system or sludge performance. The two plants demonstrated a similarity in bacterial community structures of raw sewage and activated sludge, but they had different effluent populations. Many dominant bacterial populations of raw sewage did not appear in the activated sludge samples, suggesting that the dominant bacterial populations in raw sewage might not play an important role during wastewater treatment. Although the two plants had different sludge properties in terms of settleability and foam forming ability, they demonstrated similar actinomycetic community structures. For activated sludge with bad settling performance, the treated water presented a similar DGGE pattern with that of activated sludge, indicating the nonselective washout of bacteria from the system. The plant with better ammonium removal efficiency showed higher ammonia-oxidizing bacteria species richness. Analysis of sequencing results showed that the major populations in raw sewage were uncultured bacterium, while in activated sludge the predominant populations were beta proteobacteria.  相似文献   

7.
Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: 0.1,2–0.1,and 2 mm.With increased contact time,the concentration of heavy metals in the leachate was significantly decreased for small particles,probably because of adsorption by the clay soil component.For the different particle sizes,the removal efficiencies for Pb and Cd were75%–87%,and 61%–77% for Zn and Cu,although the extent of removal was decreased for As and Cr at 45%.The highest efficiency by washing for Pb,Cd,Zn,and As was from the soil particles 2 mm,although good metal removal efficiencies were also achieved in the small particle size fractions.Through SEM-EDS observations and correlation analysis,the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe,Mn,and Ca contents of the soil fractions.The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient,and practical remediation parameters were also recommended.  相似文献   

8.
Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured.  相似文献   

9.
Extraction of copper from sewage sludge using biodegradable chelant EDDS   总被引:1,自引:0,他引:1  
[S,S]-Ethylenediaminedisuccinic acid(EDDS),a biodegradable chelant,was used to separate the heavy metals from the sewage sludge based on chemical extraction technology.Under various conditions,the extraction experiments were carried out for the sewage sludge from Shanghai Taopu Municipal Wastewater Plant,China.The influences ofpH and the concentration of EDDS on the extraction efficiency for copper(Cu)were discussed.The results showed that EDDS had higher extraction efficiency for Cu from the sewage slud...  相似文献   

10.
This investigation was to assess the joint effects of metal binary mixtures on seed germination,root and shoot growth,bacterial bioluminescence,and gene mutation based on the one toxic unit(1 TU)approach.Different sensitivities and orders of toxicity of metal mixtures were observed among the bioassays.In general,mostly additive or antagonistic effects were observed,while almost no synergistic effects by the binary metal mixtures in all bioassays.Therefore,the combined effects of heavy metals in the different bioassays were difficult to generalize since they were dependent on both chemical type and the organism used in each bioassay.However, these results indicate that a battery of bioassays with mixture chemicals as opposed to just a single assay with single metal is a better strategy for the bioassessment of environmental pollutants.  相似文献   

11.
采用盆栽试验研究了不同剂量污泥(体积分数,即污泥体积占污泥和沙土总体积的百分比,分别为:0、20%、33.3%、50%和100%)施用于风沙土条件下,污泥剂量对樟子松幼苗生物量及其对重金属的累积和土壤中重金属有效性的影响.结果表明,在养分含量低的风沙土中,施用污泥能够显著提高樟子松幼苗生物量,最适剂量为50%;污泥剂量的增加可促进樟子松植株对重金属的吸收和累积,在最适剂量(50%)条件下,樟子松植株中Cu、Cd、Pb、Zn的累积量分别是对照(不施污泥)的18.0、8.9、17.1、11.5倍;樟子松植株重金属吸收速率顺序为:ZnCuPbCd,而迁移系数顺序为:ZnCdCuPb;土壤中有效态重金属含量随污泥剂量的增加而增加,而植株收获后土壤中有效态重金属下降幅度均小于对照.  相似文献   

12.
稳定化处理对矿渣中重金属迁移转化的影响研究   总被引:6,自引:4,他引:2       下载免费PDF全文
土壤中重金属的不同存在形态会产生不同的环境效应,并直接影响重金属的毒性、迁移性和生物有效性.以石灰、粉煤灰、干化污泥、花生壳为稳定剂,对某金矿区含重金属矿渣进行组合处理;通过重金属形态分析、淋滤试验、植物盆栽试验,探讨矿渣中重金属的迁移转化规律.结果表明,添加稳定剂后,酸性矿渣的pH升高至中性以上,有机质含量显著增加.矿渣中As、Pb、Zn的主要存在形态为残渣态,添加粉煤灰、干化污泥和花生壳使矿渣中可交换态As和有机结合态As含量分别降低了65.6%、87.7%;添加石灰、粉煤灰和花生壳使矿渣中铁锰氧化物结合态As主要向碳酸盐结合态As转化;添加石灰和粉煤灰使矿渣中的可交换态、铁锰氧化物结合态和有机结合态Pb、Zn主要向残渣态Pb、Zn转化.经前期稳定化处理后,矿渣淋滤液中As、Pb、Zn的含量均有不同程度的下降,添加花生壳处理后淋滤液中的As、Pb、Zn含量进一步下降.其中,粉煤灰、干化污泥和花生壳处理后淋滤液中As含量下降最显著,降幅为57.4%;石灰、粉煤灰和花生壳处理后淋滤液中Zn含量下降最显著,降幅为24.9%.添加稳定剂处理矿渣明显有利于植物的萌发与生长,其中添加粉煤灰、干化污泥和花生壳效果最好,香根草的萌发率为76%.  相似文献   

13.
利用剩余活性污泥的生物吸附降低城市污水污泥重金属含量   总被引:17,自引:0,他引:17  
对香港沙田和广州大坦沙污水处理厂的污水、污泥作了初步的生物吸附试验,结果表明:少量活性的污泥能够显著降低污水中Cu、Zn、Ni的浓度,污泥浓度为0。.06g/L时,广州污水上述3种重金属的去除率分别为82%,69%和51%,因此回流活性污泥到一沉池可有效降低上述金属进入生物反应池。  相似文献   

14.
比较研究了生物沥滤和电动修复不同的结合方式对污泥中重金属处理效果的影响.在先进行生物沥滤4d之后用电动修复技术对污泥进行处理,试验结束之后污泥中的Cu含量为60.5mg·kg-1,Zn含量为170mg·kg-1;而采用同步生物沥滤和电动修复试验时,处理结束后污泥中Cu含量为122.8mg·kg-1,Zn含量为110mg·kg-1.利用2种修复技术处理污泥,污泥中重金属含量均达到我国污泥土地农田利用的标准,但先生物沥滤后电动修复可以减少能耗.  相似文献   

15.
分析了广州7种城市污泥中Zn、Cu、Pb、Cr、Mn、Ni的含量,研究了其中5种污泥中重金属的形态特征,并利用地累积指数(Igeo)和潜在生态危害指数法(RI)对污泥农用过程中重金属的潜在生态风险进行了综合性评价. 结果表明,广州不同来源城市污泥中Cu、Zn、Mn、Ni含量较高,变化幅度较大,而Pb、Cr含量较低. 除一种污泥中Cu超标外,其他重金属基本符合国家农用控制标准(GB18918-2002),但所有污泥中重金属含量都超过珠江三角洲耕地土壤均值.不同重金属在不同污泥中的形态分布差异较大. 其中,含工业污水污泥中Cu、Cr还原态占很大的比例,Pb、Fe主要以还原态和残渣态存在;生活污水污泥中重金属主要以可氧化态和残渣态存在,酸可交换态中Mn的比例较高,易还原态中Zn的比例较高;5种污泥中Cu、Zn、Mn潜在迁移性最强.Igeo和RI评价结果表明,污泥中Cu、Zn、Mn是潜在的强生态风险元素,污泥在农用过程中具有一定生态风险性. Igeo和RI用于污泥农用过程中重金属的生态风险评价是可行的,与其它评价方法相比较, RI能更好地反映污泥中重金属对生态环境的综合影响.  相似文献   

16.
黄铁矿与硫粉配合提高污泥重金属的淋滤效果   总被引:14,自引:2,他引:14       下载免费PDF全文
 通过接种嗜酸性硫杆菌复合菌株(氧化亚铁硫杆菌与氧化硫硫杆菌)并采用序批式试验,研究了黄铁矿与硫粉2种底物配合使用对污泥中重金属生物淋滤效果的影响.结果表明,2种底物配合可加速污泥中重金属(Zn, Cu)的浸出,显著提高其去除率.经过18d的生物淋滤,在2种底物配合并接种的处理中,Zn和Cu的去除率分别可达89.2%,56.5%;而在单独加黄铁矿并接种的处理中两者的去除率分别为12.0%, 0.9%;单独添加硫粉并接种处理中分别为85.2%,37.6%,进一步验证了生物淋滤技术去除污泥中重金属的可行性.  相似文献   

17.
广州市污水污泥中的重金属及其农用探讨   总被引:4,自引:1,他引:3  
分析了广州市6种污水污泥中重金属(Zn,Cu,Pb,Cr,Mn和Ni)质量分数及其存在形态,并对污泥农业利用过程中施用的最大量进行了估算.结果表明:广州不同来源污水污泥中.(Cu),w(Zn),w(Mn)和,(Ni)较高,变幅较大,而w( Ph )和w( Cr)低.除一种污泥中w(Cu)超标外,其他重金属基本符合国家农用控制标准(G1318918-2002),但所有污泥中重金属质量分数都超过广州市农田土壤平均值.不同重金属以及同一重金属在不同污泥中的形态分布也不同,其中Zn,Mn和Ni的潜在迁移性强,Cu和Cr中的还原态占有很大的比例,污泥中Pb主要以还原态和残渣态存在.根据广州市主要旱地赤红色土壤静态环境容量和动态环境容量计算表明,污泥农用过程中Cu和Zn是主要监控污染元素,不同来源污泥的最大施用量有明显差异.为保证土壤环境的安全,建议将Cu和Zn作为控制城市污水污泥农用过程中最高施用量的计算参考指标.  相似文献   

18.
以武汉某污水处理厂未厌氧消化与厌氧消化的污泥(分别为S1和S2)为研究对象,通过振荡淋洗实验,研究了皂角苷(质量分数0.1%~2.0%)和柠檬酸(0~1 mol·L~(-1))联合对2种污泥中Ni、Pb、Zn的去除效果,确定皂角苷和柠檬酸联合淋洗的最佳浓度组合,并采用BCR连续提取法分析淋洗前后3种重金属的形态变化.结果表明,皂角苷和柠檬酸联合对污泥中3种重金属均有较好的去除效果,Ni、Pb、Zn的最高总去除率分别为76.02%、59.93%和15.94%.综合分析,1%的皂角苷与0.4 mol·L~(-1)的柠檬酸联合淋洗的去除效果最好,2种污泥中重金属去除率的大小均为未厌氧消化污泥(S1)厌氧消化污泥(S2).与未厌氧消化污泥相比,厌氧消化污泥Ni的残渣态、Pb的可还原态及Zn的可氧化态含量明显增加,而Ni的可还原态含量减少.联合淋洗后S1、S2中约80%的酸溶态和可还原态的Ni、Zn被去除,Pb的可还原态分别去除67.07%和58.06%;且各重金属残渣态所占比例大幅度增加,其中,Pb的增加最为明显,所占比例超过90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号