首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
李娇  田冬  黄容  徐国鑫  黎嘉成  高明  王子芳 《环境科学》2018,39(9):4338-4347
在油菜/玉米轮作下,研究不同秸秆与生物炭还田方式对农田生态系统碳平衡和收益的影响,阐明秸秆和生物炭还田的固碳作用.在重庆国家紫色土肥力与肥料效益长期监测基地,通过油菜和玉米两季作物田间定位试验,设置了常规施肥(CK)、秸秆还田(CS)、生物炭还田(BC)、秸秆+速腐剂还田(CSD)、秸秆+生物炭1∶1还田(CSBC)5个处理,测定了秸秆与生物炭还田下土壤碳累积排放量,并结合实地调研数据,从土壤呼吸碳排放、土壤碳库及作物碳库角度兼顾考虑农业成本投入,分析了秸秆与生物炭还田下农田生态系统碳排放、碳固定、碳汇效应和经济环境效益.结果表明:(1)两季作物的土壤碳累积排放量均高于对照(CK),其中秸秆直接还田(CS)处理和秸秆+速腐剂还田(CSD)处理显著(P0.05);(2)与CK对比,秸秆及生物炭还田均能提高两季作物产量与生态系统净初级生产力(NPP),增产1.49%~3.92%,NPP提高了4.44%~17.90%,且秸秆+速腐剂处理(CSD)的两季作物产量与NPP均为最大;(3)各处理(除CK外)均为系统净固碳量正值,表现为"碳汇";在油菜季和玉米季两季中,系统净固碳量最高的分别为秸秆+速腐剂还田(CSD,9.05 t·hm~(-2))和生物炭还田(BC,10.75 t·hm-2)处理,而碳排放量最低的均是生物炭(BC)处理,比CK减少62.69%~81.86%.(4)油菜季的秸秆直接还田(CS)处理的两季作物产投比最高,而两季作物的BC处理均会降低产投比,但其碳排放交易量最高(466.95~561.22元·hm-2).(5)两季作物的BC处理均会提高碳生产力(CP),而BC处理的经济效益(CJ)与生态效益(CE)均显著低于其他处理.秸秆直接还田增加了系统的经济效益和生态效益,而生物炭还田降低了系统的经济效益和生态效益.  相似文献   

2.
邓华  高明  龙翼  赖佳鑫  王蓥燕  王子芳 《环境科学》2021,42(11):5481-5490
明确生物炭和秸秆还田对未利用的新垦紫色土旱坡地土壤团聚体和有机碳的影响,为三峡库区土壤改良提供科学依据.采用田间试验方法,分析不施肥(CK)、常规施肥(NPK)、优化施肥(GNPK)、化肥减量配施秸秆(RSD)和化肥减量配施生物炭(BC)处理对不同粒径土壤团聚体含量及其有机碳贡献率的影响.结果表明,施肥可提高土壤养分含量水平,尤以RSD和BC处理最为显著;各处理以<0.25 mm粒级团聚体为优势粒级,施肥能显著增加5~0.5 mm粒级团聚体含量,提高平均重量直径(MWD)、几何平均直径(GMD)和R0.25(>0.25 mm团聚体含量)值,降低分形维数(D)和土壤结构体破坏率(PAD0.25)值(P<0.05);施肥能显著提高土壤有机碳含量,其中BC (6.73 g ·kg-1)和RSD (5.45 g ·kg-1)效果显著优于NPK (5.05 g ·kg-1)和GNPK (3.63 g ·kg-1);<0.25 mm团聚体有机碳贡献率最高(34.92%~59.49%),>5 mm团聚体有机碳贡献率最低(1.55%~6.01%),BC处理显著提高了5~2 mm和2~1 mm粒级团聚体有机碳贡献率(P<0.05),而NPK、RSD和GNPK在0.5~0.25 mm贡献率提升最为显著(P<0.05);各施肥处理均能提高油菜和玉米产量,年际间差异较大,但处理间差异不显著;土壤团聚体稳定性和作物产量随土壤有机碳的增加呈上升趋势.生物炭和秸秆还田能促进土壤中,大、中团聚体形成,有效提高土壤团聚体稳定性,增加土壤有机碳含量,促进作物增产,是改良紫色土土壤结构、提升土壤质量的有效措施.  相似文献   

3.
施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响   总被引:19,自引:1,他引:18  
生物炭是一种重要的土壤改良剂,为深入研究其对云南烟区红壤团聚体组成及有机碳分布的作用,开展了为期3年的生物炭田间定位试验.试验共设3个处理,分别为常规施肥(B0)、常规施肥配施生物炭15 t·hm-2(B15)、常规施肥配施生物炭30 t·hm-2(B30).结果表明:1随着生物炭施用年限和施用量的增加,土壤有机碳含量显著增加,B15和B30处理较对照(B0)分别增加了38.7%和60.1%;2施用生物炭显著提高了土壤各粒级团聚体有机碳含量,其中B30处理增幅最大.在不同粒级团聚体中0.25~2 mm团聚体有机碳含量增幅最大,与对照相比,B15和B30处理分别增加了24.9%和36.4%;3施炭处理(B15,B30)土壤团聚体平均重量直径(MWD)、几何平均直径(GMD)和大于0.25 mm团聚体数量(R0.25)也较对照显著增加,表明土壤团聚体稳定性显著提高;4连续施用生物炭3年后,大团聚体有机碳的贡献率明显升高,而微团聚体则相反.综上所述,生物炭对土壤团聚体和有机碳的作用过程是持续的,连续施用生物炭可显著提升土壤大团聚体含量、团聚体稳定性、土壤和各粒级团聚体的有机碳含量,在改善土壤物理性状的同时,有利于稳定增加土壤碳汇.  相似文献   

4.
紫色土壤有机碳活性组分对生物炭施用量的响应   总被引:8,自引:0,他引:8  
罗梅  田冬  高明  黄容 《环境科学》2018,39(9):4327-4337
土壤有机碳(SOC)是土壤最重要的组成部分,土壤活性有机碳是引起土壤碳库变化的关键,为研究在不同施用量生物炭还田下土壤有机碳及其活性组分的影响,本试验在重庆国家紫色土肥力与肥料效益长期监测基地测定了无物料还田(CK)、生物炭还田(8 000 kg·hm-2,BC)、0.5倍生物炭还田(4 000 kg·hm-2,0.5 BC)、2倍生物炭还田(16 000 kg·hm-2,2BC)配施化肥处理下的紫色土丘陵区油菜/玉米轮作制中土壤有机碳及活性组分含量.结果表明:(1)施用生物炭可以显著提高土壤有机碳的含量(P0.05),在一定范围内,生物炭的施用量与土壤有机碳含量成正比.适量的生物炭施入土壤后,土壤微生物量碳(SMBC)含量上升,但0.5BC和2BC处理下土壤微生物量碳反而减少.生物炭不同施入量均可提高土壤可溶性碳(DOC)和土壤易氧化碳(ROC)的含量,其中0.5BC处理的含量最高,分别为198.83 g·kg-1和4.86 g·kg-1.(2)生物炭的施用均显著降低了土壤微生物熵和ROC/SOC,其中0.5BC处理最低,分别较CK处理下降了20.45%和4.11%,而2BC处理最高.0.5BC和BC处理均能提高DOC/SOC,且0.5BC处理显著高于BC处理.总体上,虽然生物炭还田微生物活性较低,但土壤有机碳及其稳定性较高,有利于土壤有机碳积累,促进土壤固碳.同时适量的生物炭还田可以持续稳定增长土壤有机碳含量,少量生物炭0.5BC处理还田可提高土壤中可溶性有机碳和易氧化有机碳含量.  相似文献   

5.
田冬  高明  黄容  吕盛  徐畅 《环境科学》2017,38(7):2988-2999
土壤呼吸是农田生态系统碳排放的主要途径,为研究土壤呼吸、其组分和水热因子对秸秆与生物炭还田的响应,在重庆国家紫色土肥力与肥料效益长期监测基地采用根系排除法联合运用土壤呼吸自动监测系统(ACE-002/OPZ/SC)测定了无物料还田(CK)、秸秆还田(CS)、秸秆+速腐剂还田(CSD)、生物炭还田(BC)、秸秆+生物炭1∶1还田(CSBC)5种处理下的紫色土丘陵区油菜/玉米轮作制中油菜和玉米生长季的土壤呼吸及其水热因子,并计算了根系呼吸贡献.结果表明,秸秆与生物炭还田显著影响土壤呼吸季节性变化特征和峰值,除BC处理外,其他处理均促进了土壤呼吸和碳排放;油菜季土壤呼吸呈单峰曲线,在0.12~2.29μmol·(m~2·s)~(-1)波动,不同处理土壤呼吸差异显著,表现为CSCSDCSBCCKBC处理;玉米季各处理土壤呼吸变化较复杂,变化范围为1.02~15.32μmol·(m~2·s)~(-1),其中CS、CSD和CSBC呈双峰型曲线,CK和BC呈单峰曲线.土壤异养呼吸能够解释土壤总呼吸变化的86.50%~93.94%,各处理的玉米季根系呼吸贡献(26.49%~32.86%)显著低于CK处理(53.65%).土壤呼吸速率的变化主要受5cm土壤温度控制,与土壤含水量无显著关系;5cm土壤温度能够解释土壤呼吸季节变化的82%~94%.土壤呼吸的温度敏感性系数Q10值在3.28~4.47之间,与CK处理相比,CS、CSD、CSBC处理的Q10分别降低了26.62%、18.12%、20.58%;而BC处理则增大了12.53%.水热双因子对土壤呼吸不存在协同作用,仅用土壤温度单因子指数函数可较好地模拟土壤呼吸速率的动态变化.可见,秸秆、秸秆+速腐剂和秸秆+生物炭还田显著促进了土壤呼吸,生物炭还田抑制了土壤呼吸.  相似文献   

6.
明确不同森林植被对土壤团聚体和团聚体有机碳分布及稳定性的影响,为亚热带森林生态系统土壤碳库的高效经营管理提供科学依据。以重庆市缙云山的竹林、阔叶林、针叶林和针阔叶混交林这4种亚热带森林植被为研究对象,研究不同林分下土壤团聚体及团聚体有机碳在0~20、20~40、40~60和60~100 cm土壤剖面上的分布规律。结果表明,阔叶林土壤2 mm粒级团聚体含量、平均重量直径(MWD)、几何平均直径(GMD)及0.25 mm团聚体含量(R0.25)均随土层深度的增加而降低,而其他林分在整个土层中则无明显规律。在各土层中,竹林以2 mm粒级团聚体为主(30.73%~53.08%);阔叶林和混交林的2~0.25 mm粒级团聚体含量较高,为36.27%~44.67%和48.69%~52.44%;针叶林的优势粒径为2~0.25 mm和0.053 mm。总体上,在各土层中,竹林团聚体的MWD、GMD、R0.25值均高于其他林分,且其分形维数(D)低于其他林分,可见竹林的土壤团聚体稳定性较好。随着土层深度的增加,不同林分(除针叶林外)土壤团聚体有机碳含量逐渐降低,其中竹林团聚体有机碳含量最高,显著高于针叶林和混交林。就不同团聚体粒级而言,4种林分土壤团聚体有机碳在整个土壤剖面上无明显规律,但各土层均以2~0.25mm和0.053mm粒级团聚体有机碳含量较高。不同林分下土壤团聚体有机碳相对贡献率存在显著差异,其中针叶林中0.053mm粒级团聚体有机碳贡献率最高;竹林的2mm粒级团聚体有机碳贡献率高达27.44%~53.47%;而阔叶林和混交林则以2~0.25 mm粒级团聚体有机碳贡献率最高。缙云山的4种林分中,竹林的土壤团聚体稳定性较好,而针叶林的较差;在各土层中,竹林土壤各粒级团聚体有机碳含量最高,针叶林最低。  相似文献   

7.
土壤碳收支对秸秆与秸秆生物炭还田的响应及其机制   总被引:12,自引:9,他引:3  
侯亚红  王磊  付小花  乐毅全 《环境科学》2015,36(7):2655-2661
秸秆直接还田与秸秆炭化还田是目前最主要的秸秆还田措施.由于秸秆与秸秆生物炭结构和性质的差异以及还田过程的差异,其还田后的土壤呼吸和土壤碳收支必然有显著差异.采用室外盆栽的方式,以地肤草为目标植物,系统研究了土壤呼吸与土壤碳收支对多种秸秆与秸秆生物炭还田的响应及其可能的机制.结果表明,秸秆生物炭还田的土壤呼吸[均值为21.69μmol·(m2·s)-1]显著低于秸秆直接还田[均值为65.32μmol·(m2·s)-1],土壤有机碳含量(均值为20.40 g·kg-1)和植物的固碳量(平均植物生物量138.56 g)均高于秸秆直接还田(均值为17.76 g·kg-1和76.76 g);考虑了生物炭制备过程的碳丢失后,秸秆生物炭还田的土壤碳收支仍显著高于秸秆直接还田,是一种较低碳的秸秆还田模式;秸秆直接还田显著促进土壤脱氢酶活性﹑土壤β-糖苷酶活性和土壤活性微生物量,因此导致较高的土壤呼吸,而生物炭还田土壤的微生物活性普遍较低;秸秆生物炭的易氧化态碳含量和可生物降解性均显著低于秸秆对照,表明秸秆生物炭稳定性较高,难以被土壤微生物降解利用,因此其还田后土壤微生物活性普遍较低,秸秆碳可在土壤中长期保存.  相似文献   

8.
不同种植模式对土壤团聚体及有机碳组分的影响   总被引:17,自引:4,他引:13  
结合在有机农场近10年的定位研究,通过同步采样分析,比较了有机种植和常规种植两种不同模式下土壤团聚体组成、分配及团聚体内有机碳组分的差异.结果表明,常规种植模式下随着团聚体粒级的减小,团聚体4个粒级(1 mm、1~0.5 mm、0.5~0.25 mm和0.25 mm)的含量均值分别为23.75%、15.15%、19.98%和38.09%,而有机种植模式下各粒级团聚体(1 mm、1~0.5 mm、0.5~0.25 mm和0.25 mm)的含量分别为9.73%、18.41%、24.46%和43.90%,0.25 mm微团聚体含量显著高于常规种植.有机种植模式提高了土壤有机碳和全氮含量,平均值分别为17.95 g·kg-1和1.51 g·kg-1.有机种植模式下相同粒级间,团聚体中重组有机碳平均含量显著高于常规种植,且重组有机碳在0.25 mm这部分稳定性有机碳主要储存场所的微团聚体中富集.有机种植模式下易氧化态碳在1 mm大团聚体中的含量显著高于常规种植,其它粒级间没有显著差异,易氧化态碳在1 mm大团聚体中富集.有机种植模式增加了土壤有机碳及其组分含量,缓解了耕作对团聚体的破坏,并增强了有机碳的稳定性.有机种植有利于土壤固碳,这为进一步加快我国有机农业的发展提供了理论依据.  相似文献   

9.
土壤水稳性团聚体及土壤碳、氮含量是影响土壤肥力的关键因素.以福州平原稻田为研究区,在早稻和晚稻生长季,对对照、炉渣、生物炭和炉渣与生物炭配施处理下耕层和犁底层土壤团聚体分布及其稳定性,包括0.25 mm团聚体含量(DR0.25)、平均质量直径(MWD)、几何平均直径(GMD)、分形维数(D)及土壤碳、氮含量进行了测定和分析.研究结果表明:早稻和晚稻不同土层,对照、炉渣、生物炭和配施4种处理团聚体均以0.25 mm粒级为主;0.25 mm水稳定性大团聚体数量随深度增加而增加,土壤团聚体的稳定性随土层加深而增强;早稻组中,生物炭施加后MWD、GMD和DR0.25较对照组分别减少了20.08%、15.12%和21.87%,D值增加了3.67%,炉渣和配施后差异不显著(p0.05);晚稻组中,生物炭施加后MWD、GMD和DR0.25较对照组分别增加了23.00%、13.82%和16.75%,配施后MWD、GMD和DR0.25较对照组分别增加了16.77%、9.80%和15.37%,D值分别减少了3.75%和2.59%,炉渣施加后差异不显著(p0.05);炉渣、生物炭和配施3种处理都显著增加了早稻耕层和晚稻耕层土壤的碳含量,生物炭和配施处理都显著增加了早稻耕层和晚稻耕层土壤的氮含量(p0.05),3种处理都显著增大了早稻耕层土壤C/N比(p0.05),同时,土壤不同粒级团聚体碳、氮含量百分比主要集中在0.25 mm粒级大团聚体.  相似文献   

10.
生物质炭对果园土壤团聚体分布及保水性的影响   总被引:16,自引:4,他引:12  
安艳  姬强  赵世翔  王旭东 《环境科学》2016,37(1):293-300
向土壤中施用生物质炭是增加碳吸存和改善土壤理化性质的一种重要途径.利用干筛法获得土壤不同级别团聚体,探究了果园施用不同水平、不同性质生物质炭对土壤团聚体分布及其有机碳含量、土壤孔隙度和田间持水量的影响.结果表明,与不施生物质炭的处理(CK)相比,施用生物质炭在0~10 cm土层主要减少了土壤5~8 mm、0.25 mm团聚体含量,增加了1~2 mm、2~5 mm级别团聚体含量,其中1~2 mm团聚体随生物质炭施用量增加而显著增加.施用生物质炭使0~10cm土层土壤团聚体的平均质量直径有所减小,稳定性降低.与CK相比,添加生物质炭显著增加了土壤团聚体中有机碳含量,其中1~2 mm团聚体有机碳提高幅度最大,达70%以上.施用生物质炭显著提高了1 mm级别团聚体的吸湿系数,增加了土壤总孔隙度和田间持水量.  相似文献   

11.
土壤修复与改良的微生物技术   总被引:10,自引:0,他引:10  
综述了国内外近几年来关于土壤污染与损伤的微生物修复技术,包括土壤污染的微生物修复技术和土壤改良的微生物技术,总结了各项技术的工作重点、类型和思路.  相似文献   

12.
综述了现代常规农业对土壤的污染、有机农业的特点及有机农业土壤保护措施的生态学原理。  相似文献   

13.
吴静  陈书涛  胡正华  张旭 《环境科学》2015,36(4):1497-1506
为研究不同温度下的土壤微生物呼吸及其与水溶性有机碳(DOC)和转化酶的关系,设置了室内培养实验.采集南京市周边老山、紫金山、宝华山的土壤,研究不同土壤的微生物呼吸对温度升高的响应规律,并分析土壤DOC含量及转化酶活性.结果表明,不同土壤的累积微生物呼吸与土壤温度之间的关系均可用指数方程描述,其P值均达到极显著水平(P0.001),不同地点土壤的微生物呼吸温度敏感系数(Q10值)在1.762~1.895之间变异.累积土壤微生物呼吸的Q10值随着土壤温度升高表现出降低的趋势.培养后27 d土壤微生物呼吸的Q10值与培养后1 d的Q10值无显著差异(P0.05),这表明难分解有机质的温度敏感性与易分解有机质的温度敏感性一致.对于所有土壤而言,累积土壤微生物呼吸与DOC含量之间存在极显著(P=0.003)的线性回归关系,DOC可以解释累积土壤微生物呼吸31.6%的变异性.无论是单独分析不同土壤还是综合所有土壤的测定结果,累积微生物呼吸与土壤转化酶活性均存在极显著(P0.01)的一元线性回归关系,由此说明转化酶活性是衡量土壤微生物呼吸大小的一个较好的指标.  相似文献   

14.
针对我国贫瘠果园土壤结构和功能退化的问题,以餐厨垃圾制备的土壤调理剂为研究对象,从时间和空间两个层面,采用DR0.25(团粒结构体占比)、MWD(平均质量直径)、GMD(几何平均直径)和分形维数评价长期施用餐厨垃圾土壤调理剂对贫瘠果园土壤团聚体结构特征及其有机质赋存转化的影响.结果表明:施用餐厨垃圾土壤调理剂可增加0~20 cm土壤层中粒径 < 0.25 mm微团聚体的Wwi(水稳性团聚体占比),施用3 a后其Wwi最大值为23.04%,有利于提升土壤抗侵蚀性;随着施用餐厨垃圾土壤调理剂时间的延长,30~40 cm土壤层的DR0.25逐渐增加,施用5 a后各土壤层MWD和GMD均大于对照组;随着施用时间的延长,相同深度土壤层的分形维数逐渐减小,施用5 a后0~20 cm土壤层分形维数最小值为2.13,表明施用餐厨垃圾土壤调理剂有利于改善土壤团聚体粒径分布和土壤分维特征;施用餐厨垃圾土壤调理剂可提升0.5~5 mm粒级团聚体中的有机质含量.研究显示,长期施用餐厨垃圾土壤调理剂可改善土壤团聚体粒径和有机质的分布,有助于土壤团聚体中有机质的赋存转化,提高团聚体稳定性和土壤抗侵蚀力.   相似文献   

15.
长期施氮和水热条件对夏闲期土壤呼吸的影响   总被引:9,自引:7,他引:2  
张芳  郭胜利  邹俊亮  李泽  张彦军 《环境科学》2011,32(11):3174-3180
在黄土高原地区,夏季休闲期既是高温多雨期也是土壤微生物强烈活动期.研究该时期土壤呼吸变化与土壤水分、温度和施氮之间关系,有助于深入理解农田生态系统土壤呼吸的时空变异性及其影响因素.本研究以1984年设立在黄土旱塬区长期田间定位试验为平台,选取了5个不同施氮处理(N0、N45、N90、N135和N180),于2009年夏...  相似文献   

16.
套种和化学淋洗联合技术修复重金属污染土壤   总被引:7,自引:4,他引:3  
联合不同的重金属污染土壤修复技术可以弥补单一措施的不足,其中植物提取联合化学淋洗技术就是有效的途径之一.本研究通过盆栽试验,在东南景天和玉米套种情况下,用不同浓度和种类的混合试剂对土壤进行化学淋洗,测定淋洗液中重金属含量、植物的吸收量以及土壤重金属的剩余量.结果表明,第1季10 mmol.L-1的混合试剂对套种系统淋洗,Zn、Cd的总去除量(植物提取量和淋洗量)最高,两季合计对Zn、Cd的总去除率分别达到6.0%、40.46%,大于单一植物提取.土壤测定结果表明,通过两季(约9个月)套种植物联合淋洗技术处理后,土壤重金属Cd、Zn和Pb的降低率分别达到27.8%~44.6%、12.6%~16.5%和3.6%~5.7%.50 mmol.L-1的混合试剂对套种系统淋洗,会影响后季东南景天的生长,而且淋洗结束后用清水淋洗产生的淋出液浓度高于其他低浓度处理,风险较大.EDDS(乙二胺二琥珀酸)混合试剂亦能促进东南景天吸收Zn和Cd,但不能有效淋洗出土壤中的Pb.在该套种+淋洗联合技术中,Zn、Cd的去除主要靠植物提取,Pb的去除主要靠淋洗,套种+淋洗加快土壤修复,而且可能解决Zn/Cd/Pb复合污染问题.  相似文献   

17.
土壤污染现状与土壤修复产业进展及发展前景研究   总被引:1,自引:0,他引:1  
近年来随着中国土壤污染事件频发,土壤污染趋势加重,国家也越来越重视土壤污染的防治工作,正在逐步完善相关法律并进行了一系列的宏观调控.2014年4月环保部公布的公报显示,全国土壤环境状况令人堪忧.但由于中国土壤污染修复研究起步较晚,土壤修复尚未形成产业化,因此需要政府从战略高度进行产业调整、完善相关法律法规、加强政府监督和财政支持等方面给土壤修复产业予以支持,促使中国土壤修复产业健康快速发展.  相似文献   

18.
为确定生物炭对土壤呼吸速率以及土壤碳组分的影响,采用田间小区试验,以苹果果树枝条生物炭为试验材料,研究了添加0、20、40、60、80 t/hm2的苹果果树枝条生物炭后,小麦生态系统呼吸(Re)、土壤呼吸(Rs)、植物呼吸(Rp)、土壤TOC(总有机碳)、土壤POC(颗粒有机碳)、WSOC(土壤水溶性有机碳)和土壤AOC(易氧化有机碳)的变化以及各指标之间的相关性.结果表明,添加生物炭显著提高了小麦生态系统呼吸速率、土壤呼吸速率和植物呼吸速率,与对照相比分别增加了9.98%~27.57%、9.33%~19.47%和10.18%~30.14%,并且生物炭施用量为20和40 t/hm2时土壤呼吸速率显著高于其他两个处理,而对于小麦生态系统呼吸速率和植物呼吸速率来说,施用40 t/hm2生物炭时其值最高.对于土壤碳组分,施用生物炭显著提高了0~20 cm土层中土壤w(TOC)、w(POC)和w(AOC),并且土壤w(TOC)和w(POC)与生物炭施用量呈极显著正相关.对于WSOC而言,当生物炭施用量高于40 t/hm2时其值显著降低,与对照相比,0~10、>10~20和>20~30 cm三个土层中w(WSOC)分别降低了21.82%~28.37%、35.88%~36.58%和32.28%~44.07%.研究显示,适量施用生物炭能够提高土壤w(TOC)、w(POC)和w(AOC)而降低了w(WSOC),但同时也增加了小麦生态系统呼吸速率.   相似文献   

19.
杨莉琳  谢志霞  朱向梅  撒旭 《环境科学》2023,44(10):5641-5648
以土壤改良剂对荒芜重盐碱地生物改良和开发利用为研究目标,在华北低平原区滨海荒芜重盐碱地开展了施用生物炭(B)和调理剂(C)种植先锋作物油葵的大田试验.生物炭用量设2个水平(0和1.25 kg ·m-2)调理剂施用量设3个水平,分别为0、0.83和1.66 kg ·m-2,共6个处理.油葵收获后按照每30 cm一层采至90 cm搜集土样.结果表明,施用生物炭提高0~30 cm和60~90 cm土层含盐量,而土壤调理剂则显著降低0~30 cm土壤含盐量.没有发现生物炭或调理剂对土壤pH有显著影响.生物炭处理显著抑制土壤硝化作用,导致0~90 cm土层NO3--N含量显著下降,NH4+-N含量提高,对有机质(SOM)含量没有显著影响.施用土壤调理剂提高0~30 cm土壤SOM含量,调理剂施用量为1.66 kg ·m-2时0~90 cm土层的NO3--N含量显著增加.单施生物炭与调理剂或者二者组合均显著增加0~90 cm土壤NH4+-N含量、有效磷(Olsen-P)含量和有效钾(Kex)含量,但生物炭对这3种养分含量的提升效果更显著,土壤调理剂则在增加0~30 cm土壤有机质和降盐方面更有效.施用高量调理剂促进土壤硝化作用,而施用生物炭恰恰起到硝化抑制剂的作用,因此,将生物炭与土壤调理剂结合施用,是滨海荒芜重盐碱地防止NO3--N淋失、减少环境污染、增肥降盐并保障耐盐先锋作物高肥低盐生长环境的有效措施.  相似文献   

20.
生物炭对塿土土壤容重和团聚体的影响   总被引:19,自引:10,他引:9  
通过比较生物炭施入土壤2 a和5 a的试验结果,研究随年限的增长生物炭的添加对塿土容重和土壤团聚体含量及稳定性的影响.采用田间定位试验和室内分析,试验设生物炭用量为0 t·hm~(-2)(B0)、20 t·hm~(-2)(B20)、40 t·hm~(-2)(B40)、60t·hm~(-2)(B60)和80 t·hm~(-2)(B80)这5个处理,将果树树干、枝条生物炭(450℃、限氧条件下)施入土壤,与耕层土壤混匀.经过5 a,分3层测定0~30 cm土层(即0~10、10~20和20~30 cm)的土壤容重、团聚体及有机碳含量.结果表明:①生物炭施入土壤5 a与施入2 a的结果相比,其对0~10 cm和10~20 cm土层团聚体影响相对减弱,对20~30 cm土层土壤容重和团聚体的影响显著增强.②随着年限的增长,在0~10 cm土层,生物炭施用量为40 t·hm~(-2)时, 0. 25 mm团聚体的含量及团聚体稳定性显著增强,容重显著减小;在10~20 cm和20~30 cm土层,生物炭施用量为60~80 t·hm~(-2)时, 0. 25 mm团聚体的含量及团聚体稳定性显著增强,容重显著减小.③当生物炭施用量为60 t·hm~(-2)时,对土壤有机碳的增加效果表现最优.说明生物炭对土壤团聚体的影响是一个渐进的过程.生物炭施入土壤5 a,其对深层土壤的影响更为显著,20~30 cm土层的土壤容重显著降低, 0. 25 mm团聚体的含量及团聚体稳定性显著增强.从经济效益和改善效果综合考虑,在耕层土壤施入40~60 t·hm~(-2)的生物炭最适.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号