首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
针对污水处理系统混合菌形成的生物膜,比较了两种传统抗菌剂(银离子和氯)及3种小分子物质,包括双(3-氨基丙基)胺、(Z-)-4-溴-5-(溴乙烯)-2(5H)-呋喃酮(BBF)和香兰素对生物膜形成的抑制效应.结果表明,本研究所选用的传统抗菌剂中,0.05~10 mg·L-1Ag+对生物膜形成的抑制率为23%~70%,0.01~20 mg·L-1氯对生物膜形成的抑制率为23%~53%.而在3种小分子物质中,500~2000μmol·L-1双(3-氨基丙基)胺对生物膜形成的抑制率为16%~68%,0.1~200 mg·L-1香兰素对生物膜形成的抑制率为20%~37%,1~20 mg·L-1BBF对生物膜形成的抑制率为11%~18%.高浓度的Ag+(0.1~10 mg·L-1)会显著抑制混合菌的生长,且浓度越高,抑制效果越显著.1000μmol·L-1以下的双(3-氨基丙基)胺基本不会抑制混合菌的生长,但高浓度(2000μmol·L-1)的双(3-氨基丙基)胺会显著抑制混合菌的生长.  相似文献   

2.
土霉素对SBR系统细菌的抑制效应与机制研究   总被引:1,自引:0,他引:1  
基于SBR系统,从脱氮过程、化学需氧量(COD)的去除过程、胞外聚合物(EPS)的总量变化过程、比呼吸速率(SOUR)的变化过程及微生物群落的变化等多个角度出发,较系统地研究了不同浓度土霉素对SBR系统的冲击作用.结果表明,由于土霉素(OTC)的作用,系统氨氮去除率从空白对照组的99.0%分别下降至77.2%(OTC 1 mg·L~(-1))、47.4%(OTC 5 mg·L~(-1))及10.0%(OTC 10 mg·L~(-1)).此外,高浓度土霉素(10mg·L~(-1))引起EPS分泌量和异养菌SOUR分别下降至空白组的44.3%和41.2%.由高通量分析可得,由于高浓度土霉素(5 mg·L~(-1)以上)的作用,活性污泥中微生物的多样性显著下降,且微生物的群落结构也发生显著变化.属层面的分析可得,高浓度土霉素(5 mg·L~(-1)以上)反应器中的部分氨氧化菌,如Nitrospira和Nitrosomonas均受到了抑制.  相似文献   

3.
通过向自制固定床生物膜反应器(FBBR)中投加氯化锰,考察了Mn~(2+)对生物膜量、形态结构、降解性能及其胞外聚合物(EPS)组分的影响,并探究了Mn~(2+)在生物膜形成中的作用、影响规律及其对生物膜反应器运行效能的影响.结果表明,投加Mn~(2+)有助于生物膜形成,增强生物膜致密性,并促进生物膜生长;在生物膜成熟期连续投加10 mg·L~(-1)Mn~(2+)对一个周期内生物膜的降解活性影响很小,反应器COD和NH_4~+去除率分别达到85.4%±1.5%和76.3%±1.9%;生物膜不同类型EPS含量的变化表明,Mn~(2+)不仅加速了生物膜的成熟和增强了生物膜去除有机物的稳定性,而且还会刺激生物膜分泌产生更多的紧密粘附型EPS,其中的蛋白质和多糖能够保护微生物免受Mn~(2+)伤害.  相似文献   

4.
王嗣禹  刘灵婕  王芬  季民 《环境科学》2019,40(12):5430-5437
溶解氧(DO)是控制短程硝化的重要因素,其对不同的生物处理系统有不同的影响.本文研究了DO对悬浮污泥及生物膜系统短程硝化效果的影响,并利用高通量测序技术分析了微生物群落结构变化.结果表明,对于悬浮污泥系统,当DO从0. 25 mg·L~(-1)增加到0. 50 mg·L~(-1)时,氨氧化速率(AOR)从18. 08 mg·(L·h)-1升高至30. 27 mg·(L·h)-1;当曝气继续增加,DO达到3. 00 mg·L~(-1),仅运行14 d,进水氨氮(NH_4+-N)基本全部转化为硝酸盐氮(NO_3--N),且通过降低DO来恢复短程硝化效果需77 d,恢复过程缓慢.对于生物膜系统,DO由2. 50 mg·L~(-1)上升到3. 00 mg·L~(-1)的过程中,AOR稳定在11. 50~13. 50mg·(L·h)-1,当DO为3. 00 mg·L~(-1)时,80 d的运行结果显示,出水中氨氮与亚硝酸盐氮(NO_2--N)的比值可长期稳定在1∶1. 2~1∶1. 7,基本满足ANAMMOX工艺进水要求.微生物群落结构分析结果表明,悬浮污泥系统在DO从0. 25 mg·L~(-1)增加到3. 00 mg·L~(-1)的过程中,主要氨氧化菌(AOB)菌属Nitrosomonas丰度由10. 07%增长至18. 64%.当DO为3. 00 mg·L~(-1)时,生物膜系统中Nitrosomonas菌属丰度与悬浮污泥系统相近为20. 43%,且生物膜系统富集了0. 78%的ANAMMOX菌属Candidatus_Kuenenia.综上,生物膜系统内DO的变化受曝气量影响较小,短程硝化效果受DO影响较小,短程硝化速率更稳定,更适合作为ANAMMOX脱氮工艺的前处理单元.  相似文献   

5.
基于强化生物除磷(EBPR)系统,从除磷过程、挥发性脂肪酸(VFA)的消耗过程、聚羟基脂肪酸酯(PHAs)的合成与消耗过程、胞外聚合物(EPS)的总量变化过程及比呼吸速率(SOUR)的变化过程等多个角度出发,系统地研究了高浓度(10 mg·L~(-1))红霉素和土霉素对EBPR系统的短期冲击作用.结果表明,高浓度(10 mg·L~(-1))红霉素和土霉素在24 h之内均能对除磷过程产生明显的抑制作用,除磷效率分别下降至63.3%和61.2%.抗生素对VFA的消耗过程并无明显作用,而对PHAs的厌氧合成和好氧消耗过程影响较为显著.同时,高浓度(10 mg·L~(-1))抗生素对EPS中蛋白质(PN)合成量的抑制率在26.7%以上.SOUR变化过程的分析结果表明,抗生素对EBPR系统中微生物的呼吸作用抑制显著,在高浓度(10 mg·L~(-1))抗生素反应器中抑制率在16.0%以上.对比分析结果表明,相同浓度的土霉素比红霉素对EBPR系统的抑制更为显著,且EBPR系统的好氧过程比厌氧过程更容易受到抑制.  相似文献   

6.
通过向序批式生物膜反应器(SBBR)中投加氯化铝,研究了化学协同生物除磷过程中Al~(3+)对污泥脱氢酶活性(DHA)、胞外聚合物(EPS)及系统处理效果的影响.结果表明,氯化铝投加量少于0.1 mmol·L~(-1)时,Al~(3+)对微生物的活性有促进作用,多于0.1 mmol·L~(-1)的Al~(3+)对其活性有明显的抑制作用.氯化铝投加量少于0.1 mmol·L~(-1)时,Al~(3+)能够促进EPS中多糖(PS)和蛋白质(PN)的分泌,多于0.1 mmol·L~(-1)的Al~(3+)则只促进多糖的分泌,但对EPS的分泌总量没有影响.Al~(3+)会使污泥的SVI值显著降低,大大改善其沉降性能.MLSS、MLVSS基本上是随着Al~(3+)投加量的增加而增大,MLVSS/MLSS随着投药量的增加先减小后增大再减小.Al~(3+)对COD和TN的去除具有轻微抑制作用,但对TP的去除具有显著的改善作用.当Al~(3+)的投加为0.5 mmol·L~(-1)时,TP的去除效果最好,出水浓度仅为0.44 mg·L~(-1),满足一级A排放标准.此时,TP的去除率为92.7%,比不加药时提升了10.2%.  相似文献   

7.
进水氨氮浓度对生物除磷颗粒系统的影响   总被引:2,自引:2,他引:0  
李冬  曹美忠  郭跃洲  梅宁  李帅  张杰 《环境科学》2019,40(3):1360-1366
在SBR反应器中接种成熟的生物除磷颗粒,通过分阶段提高进水中氨氮浓度,研究了进水氨氮浓度对生物除磷颗粒系统的影响,确定系统对进水氨氮负荷的承受能力.结果表明,进水氨氮浓度低于45 mg·L~(-1)时,生物除磷颗粒系统具有良好的性能,TP去除率在96%以上,COD去除率在89%以上,出水TP浓度和COD浓度分别在0. 4 mg·L~(-1)和25 mg·L~(-1)以下,颗粒粒径在950μm以上,SVI在45 m L·g~(-1)以下;进水氨氮浓度为60 mg·L~(-1)时,TP去除率在95%以上,出水TP浓度在0. 5mg·L~(-1)以下,颗粒粒径为760μm,SVI为56 m L·g~(-1),系统中生物除磷颗粒出现部分解体,PAOs代谢和生长开始受到抑制.进水氨氮浓度达到70 mg·L~(-1)时,TP去除率为70%,出水TP浓度在3 mg·L~(-1)左右,颗粒粒径为570μm,SVI为75 m L·g~(-1),PN/PS值达到7. 50左右,系统中生物除磷颗粒严重解体,PAOs代谢和生长被严重抑制.随着进水氨氮浓度上升,导致生物除磷颗粒中微生物分泌蛋白质增加和多糖减少,PN/PS值增大,出现生物除磷颗粒解体,颗粒粒径减小和SVI上升,生物除磷颗粒的结构和功能被破坏.  相似文献   

8.
采用花生壳生物质废物分别在350、550和750℃条件下限氧热解制备生物炭,之后加入到苯酚污染模拟废水中,验证其强化苯酚微生物降解的效果.结果表明,未加生物炭的系统中,苯酚浓度过低(≤110 mg·L~(-1))不能使菌体达到最大浓度,苯酚浓度过高(≥420 mg·L~(-1))则会抑制菌体生长,降解率仅为43.2%,且停滞期长.添加生物炭后,苯酚去除率大幅度提高,在6~16 h时微生物进入对数生长期,苯酚浓度快速降低.2、4和6 g·L~(-1)的生物炭添加量均可使苯酚在16 h内被完全去除,高添加量的生物炭能吸附39.3%的苯酚,降低其对微生物的毒性抑制.550℃热解温度制备的生物炭取得了最好的强化效果,其pH缓冲作用可中和苯酚降解产生的酸性物质,而750℃热解温度制备的生物炭由于pH过高而使菌体难以存活.生物炭在相对低苯酚浓度下(600、800 mg·L~(-1))可显著提高其去除率,分别从29.6%、24.5%升至46.9%、36.9%.而对于初始苯酚浓度高达1000 mg·L~(-1)以上的系统,则需要海藻酸钙凝胶固定菌体到生物炭才能获得较高的降解率.  相似文献   

9.
为了考察不同污泥浓度(MLSS)下缺氧游离亚硝酸(FNA)对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的抑制影响,采用序批式反应器(SBR),基于4种MLSS(8 398、11 254、15 998和19 637 mg·L~(-1))的全程硝化污泥条件下,通过批次试验深入研究4种MLSS下的全程硝化活性污泥经过缺氧FNA(初始浓度为1. 3 mg·L~(-1))处理48 h后,AOB和NOB活性的变化情况.结果表明,缺氧FNA处理活性污泥48 h后,p H值升高0. 9左右,NO2--N浓度并未明显下降;过曝气下,NH4+-N浓度逐渐降解至0 mg·L~(-1),NH4+-N去除速率逐渐升高至4. 4~6. 8 mg·(L·h)-1,并随着抑制MLSS的升高,其所用时越短;抑制MLSS为8 398、11 254、15 998和19 637 mg·L~(-1)时,分别过曝气0~396、0~396、0~372和0~168 h内,亚硝酸盐累积率(NAR)均大于92%,当分别曝气至468、468、444和264 h时,NO2--N浓度和NAR分别降为0 mg·L~(-1)和0%,NO3--N浓度均升高至最高,其值分别为42. 6、49. 9、42. 9和47. 9 mg·L~(-1).  相似文献   

10.
nZVI对亚硝化颗粒污泥性能的冲击性影响研究   总被引:3,自引:0,他引:3  
本研究采用批次试验,考察了不同浓度纳米零价铁(n ZVI)对亚硝化颗粒污泥(NGS)性能的冲击性影响,并对氮形态转化规律、氨氧化菌比耗氧速率(SOUR-A)、胞外聚合物(EPS)与溶解性微生物产物(SMP)组成、铁元素分布情况进行了系统分析.结果表明,当n ZVI投加量从0mg·L~(-1)提高至10 mg·L~(-1)时,SOUR-A值显著提高,NGS对氨氮的去除率始终保持在95%以上,亚硝态氮比累积速率(μ(NO-2-N))由27.3mg·g~(-1)·h-1提高至30.7 mg·g~(-1)·h-1,EPS中多糖与蛋白质含量均明显上升.然而,当原水中n ZVI浓度高于25 mg·L~(-1)时,SOUR-A值大幅降低,EPS与SMP中的多糖组分出现此消彼长的现象.当n ZVI投加量达到700 mg·L~(-1)时,NGS对氨氮的去除率降至58.9%,μ(NO-2-N)值为17.5 mg·g~(-1)·h-1,仅相当于对照组的64.1%.此外,扫描电镜与能谱分析的结果表明,n ZVI在NGS表面的大量吸附不仅严重抑制了功能微生物的活性,也会显著改变污泥表面的微生态环境.  相似文献   

11.
以石油裂化催化剂废水为研究对象,采用电絮凝作为废水的预处理单元,研究CANON工艺的启动及脱氮性能.结果表明:电絮凝对原水浊度的去除率达到98.7%±1.2%,对COD去除率达到32.3%±4.5%.利用人工模拟高氨氮废水成功启动CANON工艺,TN去除率最高达到62.0%,TN去除负荷最高达到0.19 kg·m~(-3)·d~(-1)(以N计).使用石油裂化催化剂废水对微生物进行了驯化,经过108 d的运行,微生物成功驯化。利用CANON工艺处理石油裂化催化剂废水,COD去除率为40.9%±13.2%,TN去除率为67.3%±12.7%,TN去除速率为(0.07±0.02)kg·m~(-3)·d~(-1)(以N计).反应器出水COD100 mg·L-1,NH_4~+-N10 mg·L~(-1),满足石油化工企业污水的排放标准(GB8978—1996).  相似文献   

12.
纤维载体的生物膜CANON反应器的启动特性   总被引:3,自引:2,他引:1  
为研究纤维载体在CANON工艺中的运行特性,同时接种亚硝化污泥及厌氧氨氧化污泥启动CANON反应器.结果表明经过85 d运行,成功启动了CANON反应器,NRR从0.09 kg·(m3·d)-1提升至0.9 kg·(m3·d)-1并能稳定运行,说明纤维载体有利于富集污泥,反应器内能维持较高的生物量.随着微生物的富集生长,生物膜变厚,反应器的能力提升,反应器中DO达到5 mg·L-1.利用微电极测得生物膜由表及里的DO梯度为0.32~0 mg·L-1,说明生物膜变厚,氧对生物膜的穿透力减弱,亚硝化微生物量降低.荧光定量PCR结果表明,启动前后NOB菌数量维持在较低水平,AOB菌的丰度增长不大,ANAMMOX菌细胞增长了一个数量级.  相似文献   

13.
测定了架桥细菌Bacillus cereus G5与活性污泥中分离得到的13株土著细菌及3株复杂有机物降解菌配对组合后的共凝集能力和成膜能力.结果表明:凝集2 h和20 h时的共凝集率分别达到40%~70%和55%~80%;架桥细菌与其中15株细菌混合培养时的生物膜形成量高于单菌培养时的生物膜量.这表明在废水处理系统外G5能与土著菌和降解菌发生较强程度的共凝集,并可促进多数菌株生物膜量的增加.进一步考察了G5与3,5-二硝基苯甲酸降解菌Comamonas testosterone A3投加到序批式生物膜反应器(SBBR)中的生物强化效果.32 d的运行结果表明,同时投加A3与G5菌株的反应器,24 h时出水中3,5-二硝基苯甲酸由100.0 mg·L-1降解至10.1 mg·L-1,降解最快;3,5-硝基苯甲酸负荷由100 mg·L-1增加到1000 mg·L-1的运行过程中,平均降解率稳定在65.0%~88.1%的范围内,表现出最强的抗冲击能力;生物膜量在1.4~2.0 mg·cm-2之间,比其他两组反应器同期时的生物膜量略高.表明在废水处理系统内Bacillus cereus G5亦可能通过其广泛的共凝集能力,促进反应器中生物膜的形成,并辅助降解菌以自固定化方式定殖于生物膜,从而表现出快速的生物强化作用和较强的抗冲击能力.  相似文献   

14.
反硝化厌氧甲烷微生物生长缓慢、倍增时间长,难以在短时间内成功富集.为快速大量富集以甲烷为唯一电子供体的硝酸盐/亚硝酸盐还原微生物,选择甲烷通量适宜的中空纤维膜材料并设计高效无泡曝气膜生物膜反应器(MBfR).在反应器运行初期,两个反应器分别手动添加200 mg·L-1的硝酸盐和亚硝酸盐,两个反应器进行闭合自循环的76 d内,均可在10 d内将200 mg·L-1的硝酸盐和亚硝酸盐完全去除.稳定后,200 mg·L-1硝酸盐可在2 d之内全部还原,还原速率略快于亚硝酸盐.在MBfR运行第77~124 d,改为序批式生物反应器方式运行,两个反应器内反硝化速率均可达到50 mg·L-1·d-1,表明以甲烷为唯一电子供体驱动的反硝化微生物成功富集并挂膜.在微生物富集过程MBfR出水中均检出挥发性脂肪酸(VFAs),以硝酸盐和亚硝酸盐为电子受体的反应器最高VFAs含量分别可达948 mg·L-1和997 mg·L-1.高通量测序结果发现,以硝酸盐为电子受体的反应器内产酸菌PropionisporaProteiniphilum的丰度可以达到39.1%和3.1%,而在以亚硝酸盐作为电子受体时,产酸菌PropionisporaProteiniphilum丰度分别为80.9%和2.4%,是反应器内部的优势菌属.而异养反硝化菌Pseudomonas在两组微生物富集阶段均具有较高丰度.由此推测在本研究中甲烷为唯一电子供体驱动的硝酸盐/亚硝酸盐生物还原过程由VFAs作为中间产物介导完成.本研究结果可为推进污水脱氮技术的发展提供参考.  相似文献   

15.
分置式厌氧陶瓷膜生物反应器处理模拟生活污水试验研究   总被引:2,自引:0,他引:2  
为强化厌氧系统的处理效能,延缓厌氧膜生物反应器膜污染速率,采用分置式厌氧陶瓷膜生物反应器处理模拟生活污水.结果表明:厌氧反应器UASB经过60 d的启动,可实现对模拟生活污水的良好处理,COD去除率超过90%;耦合膜组件运行后,膜出水COD在22.58 mg·L~(-1)左右,COD总去除率平均为95.53%,甲烷日均产量为352 mL·d~(-1),产率最高达到0.11 m~3·kg~(-1);跨膜压差(TMP)达到26.81 kPa时膜污染严重,周期为14 d,反冲洗能够去除膜表面的泥饼层,有效地延长膜污染周期;对混合液及滤饼层中的多糖和蛋白质浓度进行了分析,结果表明,蛋白质是引起膜污染的主要物质.  相似文献   

16.
环丙沙星(Ciprofloxacin,CIP)是一种被广泛用于人类医学和动物疾病预防的抗生素类药物,在自然环境中普遍存在,以前的研究主要集中在采用不同方式对环境介质中的CIP进行吸附降解及CIP的药物作用上,有关其在污水处理过程中的迁移转化及对污水生物处理的影响尚不得而知.基于此,本文通过CIP在活性污泥处理污水中的迁移转化实验,解析其对污水生物处理过程的影响.实验结果表明:CIP的去除途径主要为生物吸附,且对低浓度CIP(0.003、0.03和0.3 mg·L~(-1))有较好的吸附效果,但高浓度CIP(3和6 mg·L~(-1))很难被去除;CIP短期/长期暴露对污泥活性及污泥生物细胞完整性无显著影响,但长期暴露会显著提高活性污泥沉降性能,同时会降低生物脱氮除磷的效率.CIP(0.05、0.5、5 mg·L~(-1))的存在使磷的去除率从97.1%±1.2%分别下降到95.8%±0.9%、89.1%±0.6%和74.3%±0.7%,出水中氨氮的去除率从96.1%±1.1%分别下降到94.6%±0.8%、87.9%±0.4%和70.2%±0.6%.机理实验表明,CIP通过抑制好氧阶段和缺氧阶段胞内聚合物聚羟基脂肪酸酯和糖原的转化来抑制磷的吸收和反硝化过程,这是CIP影响生物脱氮除磷的重要原因.此外,亚硝酸盐还原酶和多磷酸激酶的活性也受到CIP的抑制.  相似文献   

17.
微藻膜反应器处理海水养殖废水性能及膜污染特性   总被引:2,自引:2,他引:0  
马航  李之鹏  柳峰  徐仲  尤宏  王芳  陈其伟 《环境科学》2019,40(4):1865-1870
以海水养殖废水为研究对象,探究了微藻膜反应器的脱氮除磷效能及膜污染特性.采用青岛大扁藻(Platymonas helgolandica tsingtaoensis)作为生物源,经过60 d的运行,微藻膜反应器的TN和TP去除率分别为73.6%和77.9%,TN和TP去除速率达到15g·(m3·d)-1和2.8g·(m3·d)-1.反应器中的微藻能够较快富集,最大生长速率可达53.3mg·(L·d)-1,最大生物量可达1.4 g·L-1.第18d和38d分别对反应器中的微藻进行采收,未影响反应器的脱氮除磷效能,且可以在一定程度上缓解膜污染现象.微藻生物量的增加会显著提高膜污染物质的含量,三维荧光光谱结果表明,色氨酸类蛋白质和芳香类蛋白质是造成膜污染的重要因素.  相似文献   

18.
同步去除并富集磷酸盐生物膜驯化过程中微生物种群分析   总被引:2,自引:1,他引:1  
孟璇  潘杨  章豪  廖烜弘  徐林建  冯鑫  单捷 《环境科学》2018,39(6):2802-2809
本实验以同步去除并回收高浓度磷酸盐溶液为目标,开展了以挂式尼龙为生物载体的生物膜驯化培养聚磷菌的人工配水实验研究.通过扫描电镜(SEM)和Illumina MiSeq高通量测序分析技术研究了生物膜驯化过程中生物膜内菌群形态、优势菌及物种多样性变化并验证了短时间内在该常规生物膜上回收高浓度磷酸盐的可行性.反应器运行10 d后挂膜成功,COD出水50 mg·L~(-1)以下,出水磷浓度接近于零,磷去除率95%以上,并在该水平上稳定运行40 d.SEM结果显示50 d时微生物菌落均匀饱满,外形规则,轮廓清晰,成球状.MiSeq高通量测序发现优势菌门包括变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、Ignavibacteriae门、硝化螺旋菌门(Nitrospirae).其中变形菌门从47%增长至58%,占主导地位.而优势聚磷菌为Rhodocyclaceae,从17.9%增长至28.9%.回收阶段,通过提高进水磷酸盐浓度和厌氧阶段溶液中COD浓度,富磷溶液浓度从40 mg·L~(-1)升高到82 mg·L~(-1),在生物膜上实现磷酸盐的富集,并且浓度满足鸟粪石法磷回收的要求.  相似文献   

19.
采用序批式反应器,研究了好氧颗粒污泥处理畜禽养殖沼液中传统和新兴污染物的去除特性,以及系统的微生物群落结构演变情况.结果表明,畜禽沼液所含高浓度污染物不会对好氧颗粒污泥结构产生显著毒性胁迫,好氧颗粒污泥系统可实现对沼液所含有机物和氨氮的稳定去除.系统出水平均化学需氧量和氨氮浓度分别为(267±81) mg·L~(-1)和(62±12) mg·L~(-1),去除效率分别为73%±8%和91%±2%.同时,也可实现对沼液所含四环素类和磺胺类抗生素的有效去除,去除效率分别为65%±16%和98%±2%.但对磷素的去除效率较低,约为16%±2%.好氧颗粒污泥系统处理沼液过程中微生物群落结构稳定,但其中功能微生物菌群丰度会受到水质的作用影响,从毛单胞菌科Comamonadaceae(相对丰度约为16. 66%)为污泥中的主导微生物群落.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号