首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
中国燃煤汞排放清单的初步建立   总被引:69,自引:15,他引:54  
建立中国分省燃煤汞排放清单,对于研究汞的大气化学转化、迁移和沉降,制定中国汞污染控制对策具有重要意义.本研究按经济部门、燃料类型、燃烧方式和污染控制技术将排放源划分为65种不同类型,根据各类型的煤炭消费量、燃料汞含量和汞排放因子计算汞排放量,最终建立了分省燃煤汞排放清单.用2组原煤汞含量数据资料计算的2000年中国燃煤大气汞排放量分别为161.6 t和219.5 t,其中绝大部分汞排放来自工业、电力和生活消费,分别占46%、35%和14%.Hg0、Hg2+和Hgp在中国燃煤大气汞排放中所占的比例分别为16%、61%和23%.中国燃煤汞排放在各地区间有较大差异,排放量较大的省份有河南、山西、河北、辽宁和江苏,均超过10t/a.  相似文献   

2.
民用燃煤大气污染物排放清单的建立方法及应用   总被引:6,自引:0,他引:6  
民用燃煤是大气污染的重要来源,虽然其消耗总量不大,但由于缺乏污染控制措施,多为直接排放,对周边大气环境造成较大的影响。因此建立民用燃煤大气污染物排放清单,识别民用燃煤大气污染时空分布规律,量化民用燃煤在不同污染天气等级下的排放贡献及作用,掌握民用燃煤污染排放特征,能够为环境管理部门提供决策依据和参考,因此具有重要的作用。根据民用燃煤污染排放特点,本文阐述了民用燃煤大气污染物排放清单建立方法,介绍了排放因子法中活动水平和排放因子两个重要因素的获取途径及数据质量控制和保证,排放清单的验证和评估,排放清单的应用等方面内容,为各地开展区域内民用燃煤大气污染物排放清单提供参考。  相似文献   

3.
汞污染已成为一个全球性的环境问题,我国是世界上大气汞排放量最大的国家,在批准《关于汞的水俣公约》之后,我国的汞污染控制面临严峻的挑战.燃煤部门是我国大气汞排放的第一大部门,也是履约的重点部门.本研究建立了我国燃煤部门2010年和2012年的大气汞排放清单,评估了"大气污染防治行动计划"("大气十条")对燃煤部门大气汞排放的协同控制效果.同时,使用情景分析法,对2020年和2030年燃煤部门的大气汞排放进行了预测,分析了未来不同控制措施的减排效果.结果表明,2010年中国燃煤电厂、燃煤工业锅炉和民用燃煤炉灶的大气汞排放量的最佳估计值分别为100.0、72.5和18.0 t."大气十条"的实施可使我国燃煤部门到2017年比2012年减少92.5 t的大气汞排放.能源结构的调整、洗煤比例的提高和除尘设备的升级改造对于大气汞的减排效果最显著.在最佳估计情景下,2020年和2030年燃煤部门大气汞排放量分别为128.5和80.0 t,与2010年相比分别降低了33%和58%;在最严格控制情景下,2020年和2030年燃煤部门大气汞的排放量分别为103.2和50.9 t,相较2010年分别下降了46%和73%.  相似文献   

4.
我国政府已于2016年8月正式批准《关于汞的水俣公约》,大气汞污染防治是我国履约工作的重中之重,在我国的大气汞排放源中,燃煤部门的排放量占40%以上,是首要的控制对象,优先制定燃煤部门大气汞排放控制对策具有重要意义。本文分析了我国燃煤部门的履约要求,并从建立并更新燃煤部门大气汞排放清单、推行最佳可得技术/最佳环境实践(BAT/BEP)、实行全国汞减排总量控制、采用浓度控制和脱汞效率控制相结合的排放标准、强化汞污染防治监管体系五个方面,提出了我国燃煤部门履行《关于汞的水俣公约》的对策建议,为我国大气汞污染防治提供技术支持。  相似文献   

5.
中国燃煤汞排放量估算   总被引:119,自引:1,他引:118       下载免费PDF全文
研究了中国煤炭的汞含量及主要用煤行业燃煤汞排放因子.结合有关统计资料计算了我国各行业和各地区燃煤汞的排放量.全国煤炭的平均汞含量为0.22mg/kg ,主要燃煤行业中大气汞排放因子为64.0 % ~78.2 % .1995年全国燃煤共排放汞302.9t,其中向大气中排汞量为213.8t,排入灰渣及产品中的汞为89.07t.1978(1995 年全国燃煤大气汞排放量的年平均增长速度为4.8 % ,累积排汞量为2493.8t ;北京、上海、天津等超大城市排汞强度较高;燃煤汞排放是中国面临的重要环境问题.  相似文献   

6.
2005年中国燃煤大气砷排放清单   总被引:15,自引:3,他引:12  
田贺忠  曲益萍 《环境科学》2009,30(4):956-962
燃煤排放的砷是引起大气环境污染和经济损失的重要痕量元素之一.对燃煤大气砷排放进行估算可以为砷排放法规政策的制定和选择适宜的燃煤砷污染控制技术提供依据.采用基于燃料消耗的排放因子法,按照经济部门、燃烧方式和除尘设施将燃煤排放源进行分类,根据各省区不同排放类型的煤炭消耗量和燃煤平均砷含量,建立了2005年中国燃煤大气砷排放清单. 2005年中国燃煤生产和消耗量分别为2 119.8和2 099.8 Mt.燃煤导致的大气砷排放总量估算约为1 564.4 t,其中排放量最大的省区是山东(144.4 t),其次是湖南(141.1 t)、河北(108.5 t)、河南(77.7 t)、江苏(77.0 t)等,燃煤大气砷排放主要集中在中东部省区;绝大部分燃煤大气砷排放来自工业(818.8 t)和电力部门(303.4 t),分别占燃煤大气砷排放总量的52.3%和19.4%;2005年中国燃煤排放的砷大约有375.5 t是以气态形式排放到大气中,占排放总量的24%.总体上,在全国范围内燃煤大气砷污染排放控制的重点是电力和工业部门;而对于新疆、甘肃、青海、贵州等地区,还应关注生活消费燃煤引起的砷中毒事件.  相似文献   

7.
广东省工业点源大气汞排放清单更新研究   总被引:1,自引:0,他引:1  
基于包含工业点源位置、排放信息的2006年广东省环境统计数据和能源统计年鉴,编制了广东省2006年工业点源汞排放清单.利用该清单更新了1999年中国区大气汞排放清单中广东省行政区域内相应的点源清单数据内容.采用CMAQ-Hg模型基于同一气象、初始浓度和边界浓度输入条件对两套清单进行了更新效果评估.结果表明,使用包含工业点源位置及排放细节的bottom-up方法编制的排放清单有效提高了模拟结果的准确度.更新清单前后,本地和跨省大气汞沉降增量差异的初步研究结果说明不同形态的大气汞具备不同的干、湿沉降特征.据此提出,需要尽快开展符合我国实际的各类工业源大气汞排放因子和排放形态因子更新研究.  相似文献   

8.
大气汞污染模拟研究进展及控制策略优化方法   总被引:3,自引:0,他引:3  
简评了国内外大气汞污染模拟相关研究情况,指出目前我国大气汞排放模拟及污染控制研究工作非常缺乏,严重影响了我国汞污染控制策略制定以及"汞环境外交纠纷"的积极应对;并据此建议应该对我国大气汞污染模拟及控制策略优化进行系统研究,其研究内容包括:汞排放清单的建立、大气汞的长程输送、响应面模型软件(response surfac...  相似文献   

9.
1980—2007年我国燃煤大气汞、铅、砷排放趋势分析   总被引:5,自引:0,他引:5  
基于文献调研,对1980—2007年我国汞、铅、砷3种主要燃煤大气重金属排放清单进行归纳,计算了3种重金属的逐年平均排放量,并分析排放量与燃煤量的相关性、单位煤耗大气重金属污染物排放量的变化趋势及原因. 结果表明:1980—2007年我国燃煤大气汞、铅、砷排放量与燃煤量增长趋势基本一致,均呈显著正相关(R2分别为0.911、0.971、0.996),但燃煤大气汞排放量与燃煤量间的相关性却比铅、砷排放量与燃煤量的相关性小很多,这主要是燃煤电厂对汞协同脱除能力比对铅、砷强,以及电厂汞排放所占比例较大所致. 燃煤大气汞排放量在2005年后趋于稳定,而铅、砷排放量在2000年后快速增长,年均增速均超过10%,其中电厂和工业锅炉是重金属排放的重点行业. 在燃煤量不断增长的背景下,单位煤耗的大气汞、铅排放量均呈下降趋势,其中汞排放量在2005—2007年年均降低5.0%,铅排放量在1996—2007年年均降低1.7%. 这与我国主要燃煤行业除尘、脱硫、脱硝等大气污染控制装置对重金属的协同脱除能力不断增强有密切关系.   相似文献   

10.
通过对2台75 t/h循环流化床锅炉烟气中汞排放浓度、燃煤和其他固体副产物中的汞含量进行测试,分析了燃煤大气汞的排放因子,并建立了燃煤汞的质量平衡。结果表明:燃煤锅炉中,大部分汞主要存在于烟气和脱硫副产物中,燃烧后进入炉渣、飞灰中的汞含量较少,低于5%。燃煤汞排放去向与脱硫除尘控制技术有关,不同控制技术协同除汞的效果差异较大,而单质汞是燃煤锅炉汞污染防治的重点和难点。  相似文献   

11.
燃煤火电厂汞排放因子测试设计及案例分析   总被引:11,自引:6,他引:5  
在火电厂锅炉煤的燃烧中,汞的迁移是个复杂的过程.在炉内高温下,几乎所有的汞以气态形式停留于烟气中,随着烟气温度的降低,汞被再分配到粉煤灰、炉渣和空气中.采用测试和衡算的方法,对火电厂汞排放因子进行测试和分析.结果表明:汞的迁移分配与煤中汞的赋存量、粉煤灰中可燃物碳的含量及烟气温度相关.煤燃烧后,进入粉煤灰中的汞占煤中汞含量的12.7%~31.3%,进入炉渣中的汞占0.9%~12.8%,大部分汞排入大气中,占67.8%~82.2%.   相似文献   

12.
基于实测的燃煤电厂汞排放特性分析与研究   总被引:10,自引:4,他引:6  
选取我国6个有代表性的燃煤电厂进行现场实测,依据现场监测的汞排放浓度数据计算得出每个燃煤电厂汞的脱除率和汞平均排放因子,从而得出这6个燃煤电厂汞排放特性,为将来我国汞排放控制提供支持和依据.6个燃煤电厂的汞排放浓度为4.72~14.54μg/m3,汞脱除效率为20.89%~70.63%,汞排放因子为14.09~56.0...  相似文献   

13.
采用模糊综合评价法与层次分析法或专家判定法相结合,对我国燃煤电厂非常规污染物大气汞控制技术进行了综合评估,以筛选出最佳控制技术.建立了环境、经济和技术为一级指标的三层指标体系,共22个评价指标;初步筛选出洗选煤+烟气净化协同脱除技术、烟气净化协同脱除技术、烟气净化协同脱除技术+活性炭吸附技术等七项技术及技术组合并对其开展评估.结果表明:强调环境因素的层次分析法综合评估结果表明,超低排放协同脱除技术+活性炭吸附技术得分最高(0.797 0),为最佳控制技术.而专家判定法与强调经济因素的层次分析法的综合评估结果一致,洗选煤+烟气净化协同脱除技术最具经济优势,是专家认可的最佳可用技术(BAT)和最佳环境实践(BEP).研究显示,我国现阶段可采用洗选煤+超低排放协同脱除技术对燃煤电厂的大气汞污染进行控制,但为达到发达国家的严格排放标准,必须采用超低排放协同脱除技术+活性炭吸附技术.   相似文献   

14.
西安市燃煤中铅的排放量及其环境效应   总被引:17,自引:2,他引:15  
为了研究燃煤过程中铅的排放量及其环境效应,对西安市燃煤电厂的原煤、底灰、飞灰的含铅量,采暖期燃煤锅炉的原煤和炉渣的含铅量,采暖期和非采暖期降尘的含铅量等进行了分析和测算.结果表明: 燃烧1 t含铅量为30 g左右的煤,排放到大气中的铅为20 g左右.燃煤中铅的排放率为66%左右.西安市及邻区每年工农业和民用燃煤1000万t左右,主要为渭北石炭-二叠系煤,含铅量为30 g/t左右,其每年排放到大气中的铅为200t左右.  相似文献   

15.
燃煤电厂烟气汞的排放及控制研究   总被引:1,自引:0,他引:1  
随着环保意识的增强,燃煤电厂汞污染越来越受到人们的关注,对燃煤电厂烟气汞污染的控制也逐渐成为热点。介绍了燃煤电厂烟气中汞的排放形态及特性,分析了燃煤电厂烟气汞形态转化的影响因素,综述了有关燃煤电厂烟气中汞污染控制技术及研究进展,讨论了燃烧前脱汞、燃烧中脱汞和燃烧后脱汞技术,特别分析了利用现有烟气脱硫设备吸收法脱汞、吸附法脱汞、催化氧化脱汞的技术,并对燃煤电厂烟气脱汞技术的前景进行了展望,提出结合现有烟气净化设备同时脱汞的设想。  相似文献   

16.
电厂汞排放主要途径是燃煤产生的废气排放和废渣排放,在总汞排放中燃煤电厂汞排放占的比重相当大。电厂汞排放对电厂周围的环境造成了很大的污染。汞污染的危害日益被人们所关注,电厂周围的居民生活在汞污染的环境中,其身心健康令人担忧。文章作者从事电厂周围环境影响评估多年,深知电厂汞排放的危害,在文章中叙述了当前电厂汞排放对周边环境造成的污染影响,并阐述了减少电厂汞排放的几项目措施。  相似文献   

17.
The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%–49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%–36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven,sintering machine and blast furnace were 0.039–0.047 g Hg/ton steel, and for the electric furnace it was 0.021 g Hg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%–73% of total mercury emissions to air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号