首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
定量分析不同密度云杉(Picea asperata)人工林的土壤特性及水源涵养功能,为人工林可持续经营提供理论依据。以28块7种不同密度梯度的云杉人工幼龄林为研究对象,采用样地调查及取样分析方法,测定土壤理化性质、枯落物持水量以及林地贮水性能等。结果表明:1)林分密度对云杉人工林的土壤容重、孔隙度、有机质含量、土壤持水量、枯落物蓄积量和持水量都具有显著影响,随着林分密度的增加,土壤孔隙度、土壤养分、枯落物蓄积量、枯落物持水量、土壤持水量表现为先增加后减小,而土壤容重则表现为先减小后增加。密度为1 550 株/hm2时林分土壤容重最小(1.09 g/cm3),总孔隙度较大(58.99%),有机质含量最高(9.12%),枯落物总蓄积量最多(44.41 t/hm2),最大持水量较高(166.67 t/hm2),是密度为3 000 株/hm2林分的4.49倍,土壤持水性能较好(3 898.93 t/hm2)。2)根据林地总贮水量评价的涵养水源功能依次为林分密度1 550 株/hm2(4 068.36 t/hm2)>密度1 750 株/hm2(3 945.32 t/hm2)>密度1 350株/hm2(3 698.39 t/hm2)>密度1 060 株/hm2(3 484.10 t/hm2)>密度2 300 株/hm2(3 157.60 t/hm2)>密度850 株/hm2(2 915.03 t/hm2)>密度3 000 株/hm2(2 820.81 t/hm2)。3)在该研究的林分密度范围内,密度为1 550 株/hm2时林分的土壤特性及水源涵养功能最佳。  相似文献   

2.
燕山北部山地人工林和天然次生林的生物碳贮量   总被引:1,自引:0,他引:1  
为了了解人工林与天然次生林碳汇功能的差异,以燕山北部山地华北落叶松人工林和杨桦天然次生林为研究对象,对不同年龄阶段的两种林分的生物碳贮量进行了研究。结果表明:13、18、28 a生杨桦天然次生林总生物碳贮量分别为27.33、35.77、46.13 t/hm2,9、13、30 a华北落叶松人工林分别为21.97、34.14、55.62 t/hm2; 0~13 a,14~18 a,19~28 a杨桦林生物总碳贮量的年碳积累速率分别为2.10、1.69、1.04 t/hm2, 0~9 a,10~13 a,14~30 a落叶松林分别为2.44、3.04、1.34 t/hm2;华北落叶松单木生物量增长速率明显高于白桦和山杨,在10~25 a的年龄段,落叶松生长速度是白桦、山杨的1.63~5.83、2.26~7.87倍;华北落叶松的BCEF(生物量转化和扩展因子)和BEF(生物量扩展因子)随年龄和胸径的增长有逐渐降低的趋势,而白桦和山杨的两个参数则有逐渐增加的趋势。由此得出结论,在燕山北部山地,与杨桦天然次生林相比,华北落叶松人工林表现出更强的碳吸存能力,该地区大面积的华北落叶松幼、中龄林具有巨大的碳汇潜力;同时,使用生物量碳计量参数时应考虑树种、林龄和胸径的差异。  相似文献   

3.
江西省2001-2005年森林植被碳储量及 区域分布特征   总被引:10,自引:4,他引:10  
利用"十五"期间(2001-2005年)江西省森林资源二类清查资料,根据优势树种生物量扩展方程,估算江西省森林植被的碳储量和碳密度,并分析其地理分布特征。江西省森林植被的总碳储量为263.87 Tg C(1 Tg C=106 t),其中林分碳储量为214.70 Tg C。在11个地市中,赣州市的森林植被碳储量最大,为70.11 Tg C,其次是吉安市、上饶市和宜春市。江西省森林植被的平均碳密度为26.27 t/hm2,林分平均碳密度为27.20 t/hm2,各地市森林植被的平均碳密度景德镇市最大,为31.65 t/hm2,其次为宜春市、吉安市和鹰潭市。各森林类型中,杉木(Cunninghamia lanceolata)林的碳储量最大,为73.77 Tg C,占江西省林分碳储量的34.36%;硬阔林的碳密度大于其他类型森林,为42.64 t/hm2,是江西省森林植被平均碳密度的1.5倍多。幼、中龄林的碳储量占全省林分碳储量的81.95%,碳密度随着龄级的增长而增加。  相似文献   

4.
基于1973~2013年8次省森林清查数据以及实测数据改进的生物量蓄积量转换参数,利用生物量转换因子连续函数法,研究了近40a黑龙江省森林碳储量及其动态变化.结果表明:黑龙江省森林碳储量从1973~1976年的1159.35 TgC下降到2009~2013年的833.99 TgC,其中天然林减少387.51 TgC,人工林增加62.15 TgC;森林总体表现为碳源(-10.88 TgC/a),主要归因于天然林面积的减少.不同森林类型的碳储量存在较大差异,桦木、落叶松和阔叶混是碳储量的主要贡献者;大多数森林类型的碳密度呈上升趋势.森林以中、幼龄林为主,中龄林碳储量占同期全省总量的27.9%~46.6%,其他龄组的碳储量均呈减少趋势,以成熟林最为明显(201.17 TgC);幼龄林、中龄林和近熟林的碳密度分别增加2.20、3.21和3.43MgC/hm2,成熟林和过熟林则有所下降;不同龄组森林面积和碳密度的变化是导致其碳储量变化的主要原因.  相似文献   

5.
以山东省长岛县北长山岛为研究区,通过现场调查、数学模型和3S技术,分析人工林生物量的总量(全部生物量)、存量(活树生物量)、失量(死树生物量)和存量失量比,并探讨生物量的影响因子.结果显示:(1)北长山岛人工林生物量总量共5.88万t,均值为145.8t/hm2,高于全国和山东省的平均水平;生物量存量共3.79万t,失量共2.09万t,其均值分别为93.9t/hm2和51.9t/hm2,森林健康问题已经成为影响北长山岛人工林生物量的重要因素.(2)随着林分密度的增加,生物量总量和存量呈现先上升后下降的趋势,失量持续上升,存量失量比则不断下降;随着胸径的增大,黑松的存量失量比逐渐减小,刺槐则相反;NDVI与生物量总量、存量和存量失量比呈显著正相关,与失量呈显著负相关.(3)存量失量比与坡向、土壤含水率、全磷和总氮呈显著正相关,与海拔、坡度、含盐量和全钾呈显著负相关,与坡位、pH值和总碳关系不明显.  相似文献   

6.
华西雨屏区不同密度巨桉人工林土壤呼吸特征   总被引:9,自引:0,他引:9  
从2008-03至2009-02,采用闭合动态法(LI-6400-09)对华西雨屏区不同密度中龄巨桉人工林土壤呼吸进行了研究。结果表明:①该林分土壤呼吸具有明显的季节动态,各密度林分土壤呼吸速率最高值均出现在7月份,最低出现在1月,且密度为883株·hm-2(1.5 m×8 m)的巨桉林土壤呼吸速率最大,2 222株·hm-2(1.5 m×3 m)的最小;②2008年4、7、10月土壤呼吸速率24 h平均值均表现为883株·hm-2> 1 333株·hm-2> 2 222株·hm-2,且7月>4月>10月;③土壤微生物生物量碳氮、土壤有机质含量和10 cm根系生物量都表现出相同的趋势,即林分密度越小,土壤微生物生物量碳氮越高,草本植物越多,根系生物量越大,有机质含量越多;④温度是巨桉林土壤呼吸变异的主导因子,土壤呼吸速率与土壤温度和湿度的双因素模型优于单因素模型,两者共同解释了土壤呼吸速率月动态的78.3%~91.5%;⑤各密度林分土壤呼吸Q10值随巨桉林分密度增大而降低,大小顺序为3.65(883株·hm-2)>2.60(1 333株·hm-2)>2.55(2 222株·hm-2)。  相似文献   

7.
发展林业碳汇是应对全球气候变化及实现中国2060年碳中和的重要举措。基于改进的Faustmann-Hartman模型,以中国南方浙江、福建和江西三个省份杉木人工林为研究对象,使用时间序列模型拟合并预测中国碳排放权交易市场的碳汇价格,通过蒙特卡洛模拟确定最优轮伐期及碳汇收益。研究结果表明:(1)依次纳入木材收益、地上生物量碳汇收益和死亡有机质碳汇收益时,杉木人工林的最优轮伐期分别为21.85年、22.98年和22.88年;(2)上述三种情景下,林地期望价值的净现值分别为20408.20元/hm2、24587.29元/hm2和28101.11元/hm2;(3)全面考虑包含死亡有机质碳库在内的林业碳汇效益,能够稳定提高林地所有者收益约7.02%~21.61%。此外,应进一步考虑多轮伐期下税收政策及自然风险等因素对碳汇营林的影响,这是确定最优轮伐期和碳汇收益后续研究值得重视的问题。  相似文献   

8.
为研究林分密度对侧柏人工林土壤特性及水源涵养能力的影响,以华蓥市7种林分密度侧柏林为研究对象,通过固定样地调查及取样分析方法,测定土壤理化性质、枯落物持水量并计算林地贮水能力,并采用方差分析、相关分析等研究了其对林分密度的响应,探讨林分最适留存密度,以期为当地侧柏人工林的可持续经营提供依据。结果显示:侧柏人工林枯落物最大持水率随林分密度增加先变大再减小,有效拦蓄量对林分密度的响应差异显著,中等密度(3 975株/hm~2)侧柏林拦蓄能力最优;林分密度对土壤团聚体分形维数、平均质量直径、平均几何直径都有显著影响,随着林分密度的增加均表现为先增加后减小的趋势,土壤团聚体有机质对林分密度响应差异显著,含量最高的为4 250株/hm~2;林分密度对土壤最大持水量和毛管持水量的影响差异显著,但较浅层土壤在675~5 300株/hm~2密度下土壤持水能力随林分密度变大而增强;综合来看,林下枯落物层是该地区侧柏人工林水源涵养功能的主体,林地有效拦蓄量按林分密度排序为3 975株/hm~21 475株/hm~24 250株/hm~25 775株/hm~25 300株/hm~22 675株/hm~2675株/hm~2,中等林分密度的涵养水源功能最佳。  相似文献   

9.
基于GIS与群落调查的北京市野生北柴胡资源量测算   总被引:2,自引:0,他引:2  
以2007年北京市地全区236个群落调查样方数据和典型区域300株野生北柴胡采样数据为基础,采用模型模拟、样方调查、GIS与数理统计等方法,对野生北柴胡分布与资源产量进行研究。结果表明:①北京市野生北柴胡在植物群落中的种群密度介于0~6000株/hm2之间,产量密度范围介于0~683kg/km2之间,密度最大的生境为海拔1 800m左右的山顶杂草草甸;②不同生境下根生物量(Y)与植株地上形态特征株高(x1),叶片数(x2)和分枝数(x3)显著相关;③北京地区北柴胡资源分布面积为752 937hm2,资源总量约为410t;④北京市野生北柴胡资源的水平分布特征表现为,东部怀柔、密云和平谷等地产量密度低,西部和中部地区密度较高,从垂直变化规律看,北柴胡分布的主要区域集中在海拔100~2 000m的范围内,随着海拔高度的增加,产量密度表现出先增加后减少的总体趋势。  相似文献   

10.
通过分析酸雨和氮沉降对马尾松林土壤细菌群落结构及多样性的影响,探究马尾松林对环境胁迫的响应机制,为天目山国家自然保护区资源管理和保护提供理论参考依据.于2017~2021年在浙江省临安天目山国家级自然保护区设置4个酸雨和氮沉降模拟梯度[即pH 5.5和0 kg·(hm2·a)-1,CK; pH 4.5和30 kg·(hm2·a)-1,T1; pH 3.5和60 kg·(hm2·a)-1,T2; pH 2.5和120 kg·(hm2·a)-1,T3].使用Illumina MiSeq PE300二代高通量测序平台对4种处理土壤细菌16S rDNA进行测序,分析不同处理土壤细菌群落组成和结构的差异及其影响因素.结果表明,酸雨和氮沉降显著降低了马尾松林土壤细菌α多样性(P<0.05).马尾松林土壤由36个门类的菌群组成,酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)、放线菌门(A...  相似文献   

11.
姚鑫  赵敏 《自然资源学报》2017,32(7):1113-1124
由于城市森林可改善人居环境并提高居民的生活环境质量而备受关注,而城市化进程的加剧使生态系统的结构也发生了很大变化。论文以快速城市化进程中上海“城-郊”样带为例,基于地理信息技术,采用景观格局分析和数理统计方法,有效量化“城-郊”样带;并借助植被功能分类的相关理论,以乔木组成和结构变化为载体,探讨城市化程度对城市森林的影响。结果表明:1)城区乔木丰富度指数(S)、Shannon-Wiener指数(H)和Simpson指数(D)高于郊区,二者存在显著性差异(P<0.05);但城区和郊区乔木物种均匀度分别为0.448±0.043和0.394±0.038,不存在显著差异(P>0.05)。2)城区乔木的密度小于郊区,分别为248±25和472±57株/hm2;且二者间存在显著性差异(P<0.05)。3)城区和郊区的城市森林群落的生长潜能存在一定的差异,郊区具有较多数量的高生长潜能乔木,而城区中低生长潜能的常绿乔木密度比郊区高;4)城区、郊区中各胸径量级的乔木数量分布均呈倒J型曲线。通过该研究以期促进城市森林生态系统服务功能发挥的同时也为进行城市森林的管理提供科学依据。  相似文献   

12.
杉木人工林碳收获预估技术研究   总被引:6,自引:5,他引:1  
从收获预估的角度确定森林碳收获大小与林分之间的关系,定义了碳收获和碳收获表的概念.采用二次正交旋转设计设置杉木(Cunninghamia lanceolata)人工林典型标准地,调查测定获取典型样地杉木人工林样木各器官碳含量及碳贮量基本数据,基于相对生长方程以单株胸径、树高、材积为自变量建立杉木人工林单木碳收获量模型,以林分平均胸径、平均树高、密度指数和蓄积量为自变量建立杉木人工林林分碳收获量模型并编制其可变密度碳收获量表.经检验,所建立杉木人工林单木各器官碳收获量模型和林分碳收获量模型预估精度均达95%以上,且模型充分考虑了单株材积和林分蓄积量对碳收获量的影响,具有较强的兼容性和可操作性,在森林碳汇估测中具有应用价值.将所建立杉木人工林碳收获量模型应用于杉木人工林单木碳收获量及林分碳收获量预估,实例计算表明其预估精度较高,单木碳收获模型的相对误差仅为4.70 %,说明所建立杉木人工林碳收获量模型可应用于福建省杉木人工林单木和林分碳储量估计,从而丰富了森林资源动态预测内容,并可为森林资源监测及其相关研究提供基础数据.  相似文献   

13.
人工防护林碳储量估算——以新疆墨玉为例   总被引:2,自引:0,他引:2  
通过2009年8月对新疆墨玉县人工减排林样地进行实地调查取样,获得该地区人工减排林生态系统植被生长状况各种数据,利用这些数据采用生物量与蓄积量关系为基础的植物碳储量估算方法及土壤剖面有机质百分含量推算土壤碳储量的方法分别对干旱区人工林植被、土壤碳储量进行估算。结果表明,干旱区墨玉县玉北固阻结合流沙固定技术试验示范区人工减排林现有碳储量4522.01Mg,波斯坦库勒天然稀疏植被封育区现有碳储量1840.12Mg,土壤平均碳储量相差不大,分别为25.91t/100m2和27.39t/100m2。波斯坦库勒天然稀疏植被封育区内大多是幼龄林,碳储量并未达到最大,随着树木的生长,这些林木还能够固定一定量的大气碳,波斯坦库勒天然稀疏植被封育区的生态系统碳储量能力还有很大的提升空间。新疆减排林区碳储量将进一步增加。  相似文献   

14.
Economic incentives for sequestering atmospheric carbon dioxide (CO2) in forests may be an effective way to meet greenhouse gas (GHG) reduction commitments under the Kyoto Protocol (KP). But concerns have been raised that the KP may create unintended incentives to excessively harvest existing forests if regenerated forests qualify for carbon (C) credits under the reforestation provision of Article 3.3. This paper combines an analytical model of the optimal forest rotation with both timber and C as priced outputs with data on timber and C growth and yield to different forest settings in the U.S. C prices of $50 per megagram (Mg) – the highest price evaluated– can considerably lengthen forest rotations (40 years or more), raise forest land values (as much as $1,900 per hectare), and sequester more C in the long run (up to 60 percent per acre), relative to the base case of no C compensation. However, if C payments are made for the regenerated stand only, in some situations, it is optimal to immediately harvest an otherwise premature stand at C prices as low as $20/Mg. The strength of perverse incentives to accelerate harvesting of existing forest varies by forest type, region, C price level, and institutional factors relevant to the compensation system. If C compensation were extended to existing stands, as may be possible under Article 3.4 of the KP, the perverse incentives for prematurely harvesting existing stands would not exist.  相似文献   

15.
Planting urban trees and expanding urban forest canopy cover are often considered key strategies for reducing climate change impacts in urban areas. However, urban trees and forests can also be vulnerable to climate change through shifts in tree habitat suitability, changes in pests and diseases, and changes in extreme weather events. We developed a three-step framework for urban forest vulnerability assessment and adaptation that scales from regional assessment to local on-the-ground action. We piloted this framework in the Chicago region in 10 locations representing an urban-exurban gradient across a range of socioeconomic capacities. The majority of trees across a seven-county region had low to moderate vulnerability, but many of the least vulnerable species were nonnative invasive species. Urban forests in the 10 pilot locations ranged in vulnerability largely due to differences in economic and organizational adaptive capacity. Adaptation actions selected in these locations tended to focus on increased biodiversity and restoration of natural disturbance regimes. However, adaptation actions in more developed sites also included incorporating new species or cultivars. Lessons learned from the pilot area can be used to inform future efforts in other urban areas.  相似文献   

16.
Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and spatially analyzed to compare CO2 sequestered by managing urban forests to equivalent amounts of CO2 emitted in both urban areas. Urban forests in Gainesville have greater tree density, store more carbon and present lower per-tree sequestration rates than Miami-Dade as a result of environmental conditions and urbanization patterns. Areas characterized by natural pine-oak forests, mangroves, and stands of highly invasive trees were most apt at sequestering CO2. Results indicate that urban tree sequestration offsets CO2 emissions and, relative to total city-wide emissions, is moderately effective at 3.4 percent and 1.8 percent in Gainesville and Miami-Dade, respectively. Moreover, converting available non-treed areas into urban forests would not increase overall CO2 emission reductions substantially. Current CO2 sequestration by trees was comparable to implemented CO2 reduction policies. However, long-term objectives, multiple ecosystem services, costs, community needs, and preservation of existing forests should be considered when managing trees for climate change mitigation and other ecosystem services.  相似文献   

17.
The development of rubber industry depends on the sustainable management of rubber plantation. To evaluate the environmental effects of planting Hevea brasiliensis on a subsystem of tropical forest ecosystem, the variation of soil fertility and carbon sequestration under rubber plantation within 30-year life period were investigated in Hainan Island. Results showed that (1) with the increase of stand age of rubber plantation, soil fertility decreased all along. From 1954 to 1995, soil organic matter, total N, available K and available P decreased by 48.2%, 54.1%, 56.7% and 64.1%, respectively. (2) If the complete return of litters was considered without additional fertilizer application to the soil of the rubber plantations, the consumption periods for P, N, K, Mg were only 825 years, 329 years, 94 years and 65 years, respectively~ To improve soil fertility is essential for rubber plantation development. (3) The C sequestration of rubber trees per hectare accounts for 272.08 t within 30-year life period and 57.91% of them was fixed in litters. In comparison with C sequestration by rain forest (234.305 t/hm^2) and by secondary rain forest (150.203 t/hm^2), rubber forest has more potentials for C fixation. On the base of above results, the following measures would benefit the maintenance of soil fertility and the development of rubber industry, including applying fertilizer to maintain the balance of soil nutrients, intercropping leguminous plant to improve soil fertility, reducing the collection of litters, optimizing soil properties to improve element P availability such as applying CaCO3. The information gathered from the study can be used as baseline data for the sustainable management of rubber plantation elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号