首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
城市化是影响区域生态系统碳循环的主要原因,也是评估生态系统碳循环的最大不确定因素。论文利用1990与2010年Landsat TM数据,基于V-I-S城市土地覆被模型和决策树分类法,获得乌鲁木齐土地变化时空格局;结合野外实测数据和文献检索得到研究区不同土地覆被类型的土壤与植被碳密度,估算了城市土地变化对生态系统碳库的影响。结果表明:1)1990—2010年间,乌鲁木齐城市不透水地表(impervious surface areas, ISA)以中部南部内部填充与北部扩张的形式约增加62%,主要占用农田(27%)与荒漠(62%)。2)乌鲁木齐市生态系统碳库主体(95%)分布在土壤中,城市土地覆被变化导致约25%的碳库损失,由农田、裸土/残存荒漠以及城市绿地转变为ISA解释了68%的土壤有机碳和63%的植被碳损失量,其空间分布与ISA的扩张相一致。城市植被及其土壤具有较高的碳密度,合理的城市规划可以抵消部分因土地变化而损失的生态系统碳。  相似文献   

2.
结合遥感影像数据与野外实测数据,对塔里木河干流2000~2010年土地利用/覆被变化及其土壤有机碳含量分布、储量等进行了分析.结果表明:2000~2010年,塔里木河干流区土地利用/覆被面积和结构均发生了变化.其中,耕地、居工用地和灌丛地呈增加趋势,且耕地与灌丛地增幅最为明显,林地、草地、水体和裸地呈减少态势且林地减少幅度最大.在林地、草地、灌丛地和裸地中,除了灌丛地之外,与2000年相比2010年林地、草地和裸地土壤中储存的有机碳量减少,且2010年储存在四种类型土地中的有机碳总量少于2000年的.10年来土地利用/覆被类型的转换导致塔里木河干流地区0~100cm土壤有机碳储量发生改变,其中土壤有机碳储量下降了的转换类型有林-灌、林-草、林-裸、草-灌、草-裸和灌-裸,相反的转换则使土壤有机碳储量增加.  相似文献   

3.
中国南北过渡带生态系统碳储量时空变化及动态模拟   总被引:3,自引:0,他引:3  
山地是全球变化的敏感地带,对生态安全与发展具有重要作用,山地生态系统服务变化和生态环境承载力是地理学与生态学的研究热点。以中国南北过渡带的主体秦巴山地为研究对象,采用CA-Markov模型与InVEST模型模拟和预测(2000—2040年)不同土地利用情景下秦巴山地生态系统碳储量变化,运用热点分析(Getis-Ord Gi*)探讨秦巴山地生态系统碳储量的空间分布差异。结果表明:(1)2000—2040年,研究区土地利用/土地覆被变化主要是耕地、林地、草地和建设用地。(2)2000—2020年,碳储量增加1.12×107 t;2020—2040年自然增长情景下,碳储量损失剧烈,减少50.24×107 t;生态保护情景下,碳损失幅度明显变弱,减少29.52×107 t,说明采取生态环境保护政策,能够有效控制碳储量减少。(3)土地利用/土地覆被与生态系统碳储量的变化呈现显著的一致性,土地利用数量变化决定了生态系统碳储量的质量和空间分布格局。(4)随着海拔抬升,碳储量呈现出“先增后减”的趋势;随着坡度升高,碳储量呈现出“W”型变化趋势。(5)热点分析结果显示,2000—2020年间,碳储量热点区和冷点区零散分布在研究区内;2040年自然增长情景下,碳储量冷热点分布范围有逐渐变大的趋势;2040年生态保护情景较2020年,秦巴山地生态系统碳储量的冷热点分布范围整体变化不大。  相似文献   

4.
近50a玛纳斯河流域土地利用/覆被变化对碳储量的影响   总被引:3,自引:1,他引:2  
土地利用变化对碳收支的影响是当前全球变化研究领域的重点内容之一,中国西北干旱区土地利用变化对陆地生态系统碳收支的影响尚不清楚。论文以西北干旱区流域绿洲水土开发的典范--玛纳斯河流域为研究区,基于Bookkeeping模型,利用多期土地覆被类型图、植被和土壤碳密度历史文献及实地调查资料,开展玛纳斯河流域近50 a荒漠转变为绿洲农田和农田弃耕两种主要土地覆被变化对碳收支的影响研究。玛纳斯河流域的垦殖活动有利于碳储量的增加,在1962-2008年的46 a间,土地利用变化导致流域植被碳储量增加6.34×105 t,土壤碳储量增加3.14×106 t,总碳储量增加3.77×106 t。受土地覆被变化面积和转换类型碳密度差异的影响,不同土地覆被类型转换对碳储量的影响存在显著差异:荒漠草地、裸地开垦为耕地均引起植被和土壤碳储量显著增加;林地开垦为耕地引起植被碳储量减少,土壤碳储量增加,总碳储量减少;而耕地弃耕通常会导致流域碳储量减少。  相似文献   

5.
土地利用/覆被变化(LUCC)是影响区域生态系统碳储量变化的重要驱动因素,探明碳储量对LUCC的响应及脆弱性,对区域实现“双碳”战略目标具有重要意义。以重庆市主城九区为例,运用InVEST模型研究了近20年主城区碳储量对土地利用转移的响应,采用潜在影响指数(PI)评估了该区域生态系统碳储量服务的脆弱性。结果表明:(1)2000—2020年间,主城区耕地面积减少743.29 km2,建设用地面积急剧增加773.48 km2。前10年土地转移面积6.05%,后10年转移13.98%,耕地转为建设用地是主要的土地转移类型。(2)近20年主城区碳储量累计减少5.78 Tg,其中建设用地侵占耕地是碳储量急速下降的主导因素。碳储量分布呈现“中部低—四周高”的空间格局。(3)近20年主城区均表现为碳源,土地利用程度指数提高14.73,PI指数为-2.50~ -2.59 Tg,均表现负面潜在影响,且2000—2015年间脆弱性不断恶化,2015—2020年间脆弱性有所缓解。研究结果可为区域生态可持续发展和未来土地利用管理政策制定提供参考,并为西部其他同类型山地城市提供借鉴。  相似文献   

6.
基于土地利用变化的陕西省植被碳汇提质增效优先区识别   总被引:2,自引:0,他引:2  
在“双碳”目标背景下,陆地植被生态系统碳汇是实现碳中和目标的重要方式。为有效识别植被碳汇服务功能提质增效的优先区,利用InVEST模型定量评估陕西省植被碳储量时空演变特征及分布格局,分析土地利用/覆被类型变化对碳储量变化的影响,研究林草生态建设碳汇增长空间差异,确定林草生态建设提质增效对象区域。结果表明:(1)陕西省土地利用类型主要以耕地、林地、草地为主,土地利用类型转移变化也主要发生在三者之间;(2)1980― 2020年陕西省生态系统碳储量总体增加91.88×106 t,增幅3.16%,呈现出“总体上南高北低、局部地区明显过高或过低”的地带性分布特征;(3)退耕还林(草)工程对碳汇能力提升效果明显,存在全局空间相关性,表现为一定的空间趋同集聚现象;(4)陕北地区为生态保护修复工程极优先区和优先区,陕南地区为中等优先区,关中地区为一般优先区。研究基于不同区县生态系统碳汇年均增长率的差异,确定生态治理优先区域,可为实现生态修复工程主导模式的分区管理以及碳汇能力提质增效提供参考。  相似文献   

7.
基于MODIS的长江源植被NPP时空变化特征及其水文效应   总被引:3,自引:1,他引:2  
植被净初级生产力是反映植被生态系统对气候变化响应的重要指标。基于2000—2010年MODIS NPP数据,结合同期年径流、气温、降水数据,运用趋势分析法、相关分析法以及径流过程指标法等方法,研究了长江源区2000—2010年植被aNPP的时空变化特征及其水文效应。研究结果表明:1) 近11 a来,长江源区植被aNPP呈增加的趋势,增加趋势不显著,线性增长率为48.22 gC/m2;在水热条件的影响下,植被aNPP增长呈现出空间异质性,增加幅度由东南向西北逐渐减少。2) 不同植被类型的aNPP增长趋势不同,其中针叶林、灌丛、高寒草甸和高寒草原的aNPP增长率分别为3.03、2.68、1.43和0.85 gC/(m2·a)。3) 植被aNPP与6—9月的气温、5—8月的降水量呈显著相关。4) 径流系数和水源涵养指数的增大进一步验证植被aNPP的增加趋势,并对源区的水资源量产生有利影响。  相似文献   

8.
城市化是影响区域生态系统碳循环的主要原因,也是评估生态系统碳循环的最大不确定因素。论文利用1990与2010年Landsat TM数据,基于V-I-S城市土地覆被模型和决策树分类法,获得乌鲁木齐土地变化时空格局;结合野外实测数据和文献检索得到研究区不同土地覆被类型的土壤与植被碳密度,估算了城市土地变化对生态系统碳库的影响。结果表明:1)1990—2010年间,乌鲁木齐城市不透水地表(impervious surface areas,ISA)以中部南部内部填充与北部扩张的形式约增加62%,主要占用农田(27%)与荒漠(62%)。2)乌鲁木齐市生态系统碳库主体(95%)分布在土壤中,城市土地覆被变化导致约25%的碳库损失,由农田、裸土/残存荒漠以及城市绿地转变为ISA解释了68%的土壤有机碳和63%的植被碳损失量,其空间分布与ISA的扩张相一致。城市植被及其土壤具有较高的碳密度,合理的城市规划可以抵消部分因土地变化而损失的生态系统碳。  相似文献   

9.
1985—2015年陕西黄土台塬表层土壤有机碳空间分布   总被引:1,自引:1,他引:0  
中尺度范围土壤有机碳的长期动态变化状态对大气温室气体的浓度、当地环境的生态效应至关重要。论文研究了陕西黄土台塬近30 a表层(0~20 cm)土壤有机碳密度的空间分布特征,并探讨了气候、地形、土壤类型、土地利用与土壤有机碳密度和储量的关系。结果表明:1)近30 a黄土台塬土壤有机碳密度和储量呈增加趋势,且增加幅度愈来愈明显,其中,1985—2000年有机碳密度和储量的增量分别为0.20 kg/m2和1.46×106 t,2000—2015年分别为0.75 kg/m2和10.87×106 t。2)1985—2015年有机碳密度随气温和降水量的增加而增加,随高程和坡度的增加呈现先增加后减少的趋势,在高程679~779 m、坡度10°~20°范围达到最大值。3)大多数土壤类型有机碳密度和储量随时间延长呈增长趋势,其中,黑垆土有机碳密度增加最大(1.59 kg/m2),黄绵土储量增量最多(5.64×106 t);不同土地利用类型有机碳密度和储量随时间延长也呈增加趋势,林草地有机碳密度增加量明显大于耕地。4)研究区表层土壤有机碳密度与气温、土壤类型、土地利用类型在P<0.001水平上相关性显著,与降水在P<0.05水平上显著相关。  相似文献   

10.
天然植被退化,部分转变为人工植被和人类聚居区是干旱区绿洲过程的重要表现之一,而目前对土地利用变化影响植被碳储量的机制还不十分清楚。论文尝试采用CASA模型及1976—2007年4期9月份Landsat卫星影像估算玛纳斯河流域9种植被类型的净初级生产力,并通过植物枯损模型估算了流域内植被碳密度,进而估算出流域内各类型植被碳储量,最后分析土地利用/覆被类型间的转移对植被碳储量的影响。结果表明,在1976—2007年间,受农作物种植结构及品种变化影响,绿洲农田植被碳密度变化较大;同期流域植被碳储量共增加了50.50×104t C,其中林地被乱砍乱伐,灌木林地、天然牧草地退化为荒草地使得流域植被碳储量减少了1.21×104t;林地、农田、荒草地以及未利用地之间的转移使得流域植被碳储量总共增加了18.52×104t C。研究结果显示,流域内植被碳储量总体呈增加趋势,且农田是影响流域植被碳储量的主要因素。  相似文献   

11.
Forest ecosystems play a significant role in maintaining climate stability at the regional and global scales as an important carbon sink.Regional forest carbon storage and its dynamic changes in the Pearl River Delta have been estimated using the continuous biomass expansion factor(BEF)method based on field measurements of forests plots in different age classes and forest inventory data of three periods(1989–1993,1994–1998,1999–2003).The results show that regional carbon storage increased by 16.76%,from 48....  相似文献   

12.
新疆阿尔泰山森林生态系统碳密度与碳储量估算   总被引:4,自引:0,他引:4  
为科学评估新疆森林碳汇功能提供更准确的基础数据,论文基于在阿尔泰山布设的35个样地实测数据,参考2011年新疆森林资源清查资料,研究了我国境内阿尔泰山森林生态系统碳储量、碳密度及其空间分布特征。结果表明:1)阿尔泰山森林生态系统平均生物量为126.67 t·hm-2,各组分生物量大小排序为:乔木层(120.84 t·hm-2)>草本层(4.22 t·hm-2)>凋落物层(1.61 t·hm-2),乔木各器官中,干、根、叶和枝分别占乔木生物量的50%、22%、16%和12%,干所占比例最大;林龄对植被生物量影响显著,生物量随林龄的增长而增加;2)生物量平均含碳率在0.40~0.53范围内,各组分、乔木各器官含碳率均不同,且林龄对含碳率影响显著;3)阿尔泰山森林生态系统碳密度为205.72 t·hm-2,碳储量为131.35 Tg,其中土壤层、乔木层、草本层和凋落物层碳储量分别为86.67、43.09、1.03、0.56 Tg,土壤层和乔木层碳储量分别占阿尔泰山森林生态系统总碳储量的66%和33%,构成阿尔泰山森林生态系统的主要碳储存库;不同龄级的碳储量表现为成熟林最大,过熟林次之,两者合计占生态系统总碳储量的61%;4)阿尔泰山森林生态系统碳密度整体呈南高北低分布,是由西北—东南不同的环境因子影响所致。  相似文献   

13.
安徽省会经济圈土地利用变化的碳排放效益   总被引:6,自引:0,他引:6  
土地利用变化是影响碳排放的重要因素。利用1997和2007年土地利用类型数据,采用碳排放评价模型,对安徽省会经济圈碳排放效益进行评价,并估算碳排放生态补偿标准。研究结果显示:①1997-2007年间碳排放总量增加1 049.92×104 t,年均增长14.4%;②2007年经济圈内地均建设用地碳排放强度和地均碳排放强度分别为1997年的2.41倍、 2.18倍,1997和2007年,碳排放强度指数值都是合肥市>巢湖市>六安市;③经济圈内各县(区)地均碳排放强度差异显著,建设用地平均碳排放强度前3位的是合肥市区、 霍山县、 金寨县;④据中国造林成本的价格估算,合肥、 巢湖、 六安3市的碳汇补偿增加量分别为:21.83×108、 4.31×108、 2.48×108元,县域生态补偿额差异显著;⑤土地利用结构、 产业结构与碳排放量存在一定的关系。从碳排放效益和生态补偿的角度,提出减少碳排放的途径。  相似文献   

14.
生物量碳密度是生态系统表征碳截存能力的重要功能特征之一。为明晰三江源区高寒草地生物量碳密度特征,选取源区内3个县(玛沁县、甘德县、达日县)的退化天然草地(黑土滩)、退化人工草地、未退化天然草地为研究对象,通过野外调查取样和室内分析相结合的方法,对样区地上生物量、根系生物量及其碳密度进行测定与分析。结果表明:“黑土滩”地上生物量高于退化人工草地和天然草地;“黑土滩”活根和死根生物量都低于天然草地和退化人工草地。退化人工草地、“黑土滩”和天然草地的总生物量碳密度分别为719.47、706.57和2 233.09 g/m2。草地退化不仅改变了生态系统的生物量分配,而且改变了地上部分、活根和死根中的碳密度分配比例。退化人工草地和天然草地的活根和死根碳密度占总生物量碳密度的90%以上,“黑土滩”活根和死根碳密度占79.41%。活根碳密度与总生物量碳密度的比值在3种不同草地群落间的变化较地上植被和死根的大,因此,活根碳密度比例可以作为草地退化的敏感指标。  相似文献   

15.
基于InVEST模型的北京山区森林生态系统碳储量评估分析   总被引:1,自引:0,他引:1  
本文基于北京山区遥感影像数据和标准样地调查数据,利用In VEST模型碳储量模块,评估分析了北京山区森林生态系统的碳储量。结果表明,北京山区森林生态系统的平均碳密度为99. 95 Mg/hm~2,其中乔木层、灌木层、草本层、凋落物层和土壤层平均碳密度分别为10. 51、3. 16、0. 86、8. 61、76. 81 Mg/hm~2。植被碳密度与土壤碳密度呈现显著正相关关系,土壤碳密度与凋落物碳密度呈现显著正相关关系。各林分类型平均碳密度表现为落叶针叶林(153. 99 Mg/hm~2)针阔混交林(132. 45Mg/hm~2)落叶阔叶林(125. 10 Mg/hm~2)常绿针叶林(111. 78 Mg/hm~2)灌木林(72. 26 Mg/hm~2)。北京山区森林生态系统总碳储量为77. 41 Tg,其中乔木层、灌木层、草本层、凋落物层和土壤层的碳储量分别为8. 14、2. 45、0. 67、6. 67、59. 48 Tg。各林分类型总碳储量表现为落叶阔叶林(43. 23 Tg)灌木林(25. 90 Tg)常绿针叶林(6. 21 Tg)针阔混交林(1. 42 Tg)落叶针叶林(0. 65 Tg)。落叶阔叶林和灌木林是北京山区森林生态系统碳储量的主要贡献者,分别占55. 84%和33. 46%。在北京山区各个区县中,怀柔区碳储量最高(15. 37 Tg),平谷区碳储量最低(4. 89 Tg)。北京山区森林生态系统碳储量分布不均,总体表现为北京山区北部区县较高,西部区县偏低,中部和东部最低。  相似文献   

16.
LUCC是影响陆地植被碳循环的重要因子之一。采用2000、2005和2009年3期遥感影像解译及运用GIS技术提取芜湖市2000-2009年的土地利用变化数据,根据前人对植被NPP的研究成果,计算芜湖市土地利用变化对生态系统中植被碳储量的影响。结果表明:在2000-2005年,耕地大量转化为林地、草地大量转化为耕地等使其植被碳储量净增加了4.43×103~22.14×103t;2005年-2009年,林地大量的转移为耕地、建筑用地,耕地转为水域、建设用地等使其植被碳储量净减少了72.34×103~289.38×103t。研究结果显示,芜湖市植被碳储量总体呈减少趋势,且林地是影响芜湖市植被碳储量的主要因素。  相似文献   

17.
 在测定植被的含碳率与土壤有机碳含量的基础上,研究了南亚热带珠江三角洲地区森林生态系统碳密度分配及其储量动态.结果表明:植被平均含碳率为35.81%~51.60%,按照生物量加权的含碳率为46.57%~52.45%;土壤有机碳含量及其差异程度为表层最高,随土壤深度增加,有机碳含量及其差异逐渐减小;相同龄级的植被含碳率与土壤含碳量均表现为阔叶林>针阔混交林>针叶林,不同龄级的森林均表现为成龄林>中龄林>幼龄林.植被碳密度与土壤碳密度范围分别为23.58~139.18,55.54~151.16t/hm2,而且土壤分配比例均大于植被分配比例,但土壤分配比例随着龄级的增长呈下降趋势.1989~2003年间,珠江三角洲森林生态系统总体碳储量及其碳密度均呈上升趋势,这说明在改革开放高速发展时期珠江三角洲森林生态系统由于生物量的增加,起到了重要的碳汇功能,而且其碳汇功能正逐步提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号