首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Workers of polydomous colonies of social insects must recognize not only colony-mates residing in the same nest but also those living in other nests. We investigated the impact of a decentralized colony structure on colony- and nestmate recognition in the polydomous Australian meat ant (Iridomyrmex purpureus). Field experiments showed that ants of colonies with many nests were less aggressive toward alien conspecifics than those of colonies with few nests. In addition, while meat ants were almost never aggressive toward nestmates, they were frequently aggressive when confronted with an individual from a different nest within the same colony. Our chemical analysis of the cuticular hydrocarbons of workers using a novel comprehensive two-dimensional gas chromatography technique that increases the number of quantifiable compounds revealed both colony- and nest-specific patterns. Combined, these data indicate an incomplete transfer of colony odor between the nests of polydomous meat ant colonies.  相似文献   

2.
In many social taxa, reproductively dominant individuals sometimes use aggression to secure and maintain reproductive status. In the social insects, queen aggression towards subordinate individuals or workers has been documented and is predicted to occur only in species with a small colony size and a low level of queen–worker dimorphism. We report queen aggression towards reproductive workers in the ant species Aphaenogaster cockerelli, a species with a relatively large colony size and a high level of reproductive dimorphism. Through analysis of cuticular hydrocarbon profiles, we show that queens are aggressive only to reproductively active workers. Non-reproductive workers treated with a hydrocarbon typical for reproductives are attacked by workers but not by queens, which suggests different ways of recognition. We provide possible explanations of why queen aggression is observed in this species.  相似文献   

3.
Multiple behavioral and chemical studies indicate that ant nestmate recognition cues are low-volatile substances, in particular hydrocarbons (HCs) located on the cuticular surface. We tested the hypothesis that in the ant Camponotus fellah, nest environment, in particular nest volatile odors, can modulate nestmate-recognition-mediated aggression. Workers were individually confined within their own nest in small cages having either a single mesh (SM = limited physical contact permitted) or a double mesh (DM = exposed to nest volatiles only) screen. Individual workers completely isolated outside their nest (CI) served as control. When reintroduced into a group of 50 nestmates, the CI workers were attacked as alien ants after only 2 weeks of separation, whereas the SM workers were treated as nestmates even after 2 months of separation. Aggression towards DM ants depended on the period of isolation. Only DM workers isolated for over 2 months were aggressed by their nestmates, which did not significantly differ from the CI nestmates. Cuticular HC analyses revealed that the profile of the non-isolated ants (NI) was clearly distinct from that of CI, SM and DM ants. Profile differences matched the aggressive response in the case of CI ants but were uncorrelated in the case of SM or DM ants. This suggests that keeping the ants within the nest environment affected nestmate recognition in additional ways than merely altering their HC profile. Nest environment thus appears to affect label–template mismatch by modulating aggressive behavior, as well as the direction at which cuticular HCs diverged during the separation period.  相似文献   

4.
Newly mated queens of monogynous (single queen) ants usually found their colonies independently, without the assistance of workers. In polygynous (multiple queen) species queens are often adopted back into their natal nest and new colonies are established by budding. We report that the Australian 'living-fossil' ant, Nothomyrmecia macrops, is exceptional in that its single queen can be replaced by one of the colony's daughters. This type of colony founding is an interesting alternative reproductive strategy in monogynous ants, which maximizes fitness under kin selection. Successive queen replacement results in a series of reproductives over time (serial polygyny), making these colonies potentially immortal. Workers raise nieces and nephews (relatedness h 0.375) the year after queen replacement. Although N. macrops is 'primitive' in many other respects, colony inheritance is likely to be a derived specialization resulting from ecological constraints on solitary founding.  相似文献   

5.
In the myrmicine ant Acanthomyrmex ferox, major workers have the same number of ovarioles as queens, thrice that of minor workers, making them well suited for egg-laying. In the queen's presence, infrequent aggression allows ranking of majors but they lay only unviable trophic eggs. Major workers engage each other, but not the minors, in antennal boxing and spectacular shaking contests, a novel interaction in ants. The absence of reversals allows a clear ranking of major workers. After queen removal, aggression becomes very frequent, but previous ranking is maintained. All majors start laying reproductive eggs although they show a skew in ovary development according to ranking. The dominant major, however, actively patrols the egg-pile and cannibalises eggs laid by subordinates.  相似文献   

6.
Under complementary sex determination (CSD), females of Hymenoptera arise from diploid, fertilized eggs and males from haploid, unfertilized eggs. Incidentally, fertilized eggs that inherit two identical alleles at the CSD locus will develop into diploid males. Diploid males are usually unviable or sterile. In a few species, however, they produce diploid sperm and father a triploid female progeny. Diploid males have been reported in a number of social Hymenoptera, but the occurrence of triploid females has hardly ever been documented. Here, we report the presence of triploid females, diploid males, and diploid sperm (produced by diploid males and stored in queen spermathecae) in the ant Tapinoma erraticum. Moreover, we show variations in the frequency of triploids among female castes: Triploid females are more frequent among workers than virgin queens; they are absent among mated, reproductive queens. The frequency of triploid workers also varies between populations and between nests within populations.  相似文献   

7.
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.Electronic supplementary material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
Workers never mate in the large majority of ants, and they have usually lost the spermatheca, an organ specialized for long-term storage of sperm. Such ‘non-sexual’ workers are restricted to laying unfertilized eggs that give rise to males, and they cannot compete with the queens for the production of female offspring. In sharp contrast, workers in 200–300 species from phylogenetically basal subfamilies can reproduce sexually (‘gamergates’) because they retain a functional spermatheca like the queens. Importantly, ‘non-sexual’ workers in closely related species have a vestigial spermatheca. In this study, we compared the reservoir epithelium of ‘sexual’ workers to that of congeneric queens and ‘non-sexual’ workers using 21 species of Amblyoponinae, Ponerinae and Ectatomminae. We show that a pronounced thickening of the epithelium near the opening of the sperm duct is strictly associated with sexual reproduction in both castes. This is unlike ‘non-sexual’ workers in which this epithelium is always very thin, with few organelles; but all other structures remain intact. We discuss this evolutionary degeneration of the spermatheca and how it relates to behavioural or physiological modifications linked to mating. Our results help understand the loss of sexual reproduction by ant workers, a critical step in the extreme specialization of their phenotype.  相似文献   

9.
In ants, nest relocations are frequent but nevertheless perilous, especially for the reproductive caste. During emigrations, queens are exposed to predation and face the risk of becoming lost. Therefore the optimal strategy should be to move the queen(s) swiftly to a better location, while maintaining maximum worker protection at all times in the new and old nests. The timing of that event is a crucial strategic issue for the colony and may depend on queen number. In monogynous colonies, the queen is vital for colony survival, whereas in polygynous colonies a queen is less essential, if not dispensable. We tested the null hypothesis that queen movement occurs at random within the sequence of emigration events in both monogynous and polygynous colonies of the ponerine ant Pachycondyla obscuricornis. Our study, based on 16 monogynous and 16 polygynous colony emigrations, demonstrates for the first time that regardless of the number of queens per colony, the emigration serial number of a queen occurs in the middle of all emigration events and adult ant emigration events, but not during brood transport events. It therefore appears that the number of workers in both nests plays an essential role in the timing of queen movement. Our results correspond to a robust colony-level strategy since queen emigration is related neither to colony size nor to queen number. Such an optimal strategy is characteristic of ant societies working as highly integrated units and represents a new instance of group-level adaptive behaviors in social insect colonies.  相似文献   

10.
Unicoloniality emerges as a feature that characterizes successful invasive species. Its underlying mechanism is reduced intraspecific aggression while keeping interspecific competitiveness. To that effect, we present here a comparative behavioural and chemical study of the invasive ant Wasmannia auropunctata in parts of its native and introduced ranges. We tested the hypothesis that introduced populations (New Caledonia archipelago) have reduced intraspecific aggression relative to native populations (e.g., Ilhéus area, Brazil) and that this correlates with reduced variability in cuticular hydrocarbons (CHCs). As predicted, there was high intraspecific aggression in the Brazilian populations, but no intraspecific aggression among the New Caledonian populations. However, New Caledonian worker W. auropunctata remained highly aggressive towards ants of other invasive species. The chemical data corresponded with the behaviour. While CHCs of ants from the regions of Brazil diverged, the profiles of ants from various localities in New Caledonia showed high uniformity. We suggest that in New Caledonia W. auropunctata appears to behave as a single supercolony, whereas in its native range it acts as a multicolonial species. The uniformity of recognition cues in the New Caledonia ants may reflect a process whereby recognition alleles became fixed in the population, but may also be the consequence of a single introduction event and subsequent aggressive invasion of the ecosystem. Chemical uniformity coupled with low intraspecific but high interspecific aggression, lend credence to the latter hypothesis.  相似文献   

11.
Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.  相似文献   

12.
In social insects, it is assumed that signals of the queen inform nestmates about her reproductive status. Thus, workers forego their own reproduction if the queen signals high fertility. In hemimetabolous termites, little is known about reproductive inhibition, but evidence exists for a royal-pair control. Workers of lower termites exhibit a high developmental flexibility and are potentially able to become reproductives, but the presence of a fertile reproductive restrains them from reaching sexual maturity. The nature of this control, however, remains unknown. Here, we report on qualitative differences in cuticular hydrocarbon profiles between queens and workers of the basal drywood termite Cryptotermes secundus. Queens were characterized by a shift to long-chained and branched hydrocarbons. Most remarkably, similar chemical patterns are regarded as fertility cues of reproductives in social Hymenoptera. This might suggest that both groups of social insects convergently evolved similar chemical signatures. The present study provides deeper insights into how termites might have socially exploited these signatures from sexual communication in their cockroach-like ancestor. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Workers of the ant Temnothorax nylanderi form dominance orders in orphaned colonies in which only one or a few top-ranking workers begin to produce males from unfertilized eggs. Between one and 11 individuals initiated 80% of all aggression in 14 queenless colonies. As predicted from inclusive fitness models (Molet M, van Baalen M, Monnin T, Insectes Soc 52:247–256, 2005), hierarchy length was found to first increase with colony size and then to level off at larger worker numbers. The frequency and skew of aggression decreased with increasing size, indicating that rank orders are less pronounced in larger colonies.  相似文献   

14.
Ants inhabit diverse terrestrial biomes from the Sahara Desert to the Arctic tundra. One factor contributing to the ants’ successful colonization of diverse geographical regions is their ability to manipulate objects when excavating nests, capturing, transporting and rendering prey or grooming, feeding and transporting helpless brood. This paper is the first to report the form and function of opposable spines on the foretarsi of queens and workers used during fine motor and gross motor object manipulation in the fire ant, Solenopsis invicta. In conjunction with their mandibles, queens and workers used their foretarsi to grasp and rotate eggs, push or pull thread-like objects out of their way or push excavated soil pellets behind them for disposal by other workers. Opposable spines were found on the foretarsi of workers from seven of eight other ant species suggesting that they might be a common feature in the Formicidae.  相似文献   

15.
Thelytokous parthenogenesis in which diploid females are produced from unfertilized eggs, was recently reported for some ant species. Here, we document thelytokous reproduction by queens in the polygynous species Pyramica membranifera. Queens that emerged in the laboratory were kept with or without workers under laboratory conditions. Independent colony founding was successful for a few queens if prey was provided. All artificial colonies, which started with a newly emerged queen and workers produced new workers and some of the colonies also produced female sexuals. Some of the female sexuals shed their wings in the laboratory and started formation of new polygynous colonies. Workers had no ovaries and thus, were obligatorily sterile.  相似文献   

16.
The ability of social insects to discriminate against non-nestmates is vital for maintaining colony integrity, and in most social insect species, individuals act aggressively towards non-nestmates that intrude into their nest. Our experimental field data revealed that intra-colony aggression in the primitive bulldog ant Myrmecia nigriceps is negligible; our series of bioassays revealed no significant difference in the occurrence of aggression in trials involving workers from the same, a close (less than 300 m) or a far (more than 1.5 km) nest. Further, non-nestmate intruders were able to enter the nest in 60% of our trials; a similar level was observed in trials involving nestmates. These results suggest that workers of M. nigriceps are either unable to recognize alien conspecifics or that the costs of ignoring workers from foreign colonies are sufficiently low to favor low levels of inter-colony aggression in this species.  相似文献   

17.
The locomotor activity rhythm of different castes of the ant species Camponotus compressus was monitored individually under laboratory light/dark (LD) cycles, and under continuous darkness (DD). The colony of this ant species comprises two sexual castes, the queens and the males, and three worker castes, namely the major, media, and minor workers. The virgin males and virgin queens display rhythmic activity patterns, but the mated queens were arrhythmic while laying eggs, with the rhythmicity resuming soon after egg-laying. Under the LD regime, major workers showed nocturnal patterns, while about 75% of the media workers displayed nocturnal patterns and about 25% showed diurnal patterns. Under the DD regime, most major workers exhibited circadian rhythm of activity with a single steady state, whereas media workers displayed two types of activity patterns, with activity patterns changing after 6–9 days in DD (turn-arounds). The pre-turn-around of the ants that showed nocturnal activity patterns during LD entrainment was <24 h after release into DD, which then became >24 h, after 6–9 days. On the other hand, the pre-turn-around of those ants that exhibited diurnal patterns during LD entrainment was first >24 h after release into DD, and then became <24 h, after 6–9 days. The activity of the minor workers neither entrained to LD cycles nor showed any sign of free-run in DD. It appears that the circadian clocks of the ant species C. compressus are flexible, and may perhaps depend upon the tasks assigned to them in the colony.  相似文献   

18.
Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants’ ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.  相似文献   

19.
Evolution of caste is a central issue in the biology of social insects. Comparative studies on their morphology so far suggest the following three patterns: (1) a positive correlation between queen–worker size dimorphism and the divergence in reproductive ability between castes, (2) a negative correlation among workers between morphological diversity and reproductive ability, and (3) a positive correlation between queen–worker body shape difference and the diversity in worker morphology. We conducted morphological comparisons between castes in Pachycondyla luteipes, workers of which are monomorphic and lack their reproductive ability. Although the size distribution broadly overlapped, mean head width, head length, and scape length were significantly different between queens and workers. Conversely, in eye length, petiole width, and Weber’s length, the size differences were reversed. The allometries (head length/head width, scape length/head width, and Weber’s length/head width) were also significantly different between queens and workers. Morphological examinations showed that the body shape was different between queens and workers, and the head part of workers was disproportionately larger than that of queens. This pattern of queen–worker dimorphism is novel in ants with monomorphic workers and a clear exception to the last pattern. This study suggests that it is possible that the loss of individual-level selection, the lack of reproductive ability, influences morphological modification in ants.  相似文献   

20.
High genetic diversity is important for the functioning of large insect societies. Across the social Hymenoptera (ants, bees, and wasps), species with the largest colonies tend to have a high colony-level genetic diversity resulting from multiple queens (polygyny) or queens that mate with multiple males (polyandry). Here we studied the genetic structure of Trigona spinipes, a stingless bee species with colonies an order of magnitude larger than those of polyandrous honeybees. Genotypes of adult workers and pupae from 43 nests distributed across three Brazilian biomes showed that T. spinipes colonies are usually headed by one singly mated queen. Apart from revealing a notable exception from the general incidence of high genetic diversity in large insect societies, our results reinforce previous findings suggesting the absence of polyandry in stingless bees and provide evidence against the sperm limitation hypothesis for the evolution of polyandry. Stingless bee species with large colonies, such as T. spinipes, thus seem promising study models to unravel alternative mechanisms to increase genetic diversity within colonies or understand the adaptive value of low genetic diversity in large insect societies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号