首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Orb-web building spiders (Araneae: Araneoidea, Uloboridae) can be considered as territorial central place foragers. In territorial central place foragers, the optimal foraging arena is circular, with the forager sitting in its centre. In orb webs, the spider’s orientation (head up or head down) whilst waiting for prey on the hub of its web and the downwards–upwards asymmetry of its running speeds are the probable causes for the observed deviation of the hub from the web’s centre. Here, we present an analytical model and a more refined simulation model to analyse the relationships amongst the spider’s running speeds, its orientation whilst waiting for prey and the vertical asymmetry of orb webs. The results of our models suggest that (a) waiting for prey head down is generally favourable because it allows the spider to reach the prey in its web on average quicker than spiders waiting head up, (b) the downwards–upwards running speed asymmetry, together with the head-down orientation of most spiders, are likely causes for the observed vertical asymmetry of orb webs, (c) waiting head up can be advantageous for spiders whose downwards–upwards running speed asymmetry is small and who experience high prey tumbling rates and (d) spiders waiting head up should place their hub lower than similar spiders waiting head down.  相似文献   

2.
The architecture of vertical aerial orb webs may be affected by spider size and gravity or by the available web space, in addition to phylogenetic and/or developmental factors. Vertical orb web asymmetry measured by hub displacement has been shown to increase in bigger and heavier spiders; however, previous studies have mostly focused on adult and subadult spiders or on several size classes with measured size parameters but no mass. Both estimations are suboptimal because (1) adult orb web spiders may not invest heavily in optimal web construction, whereas juveniles do; (2) size class/developmental stage is difficult to estimate in the field and is thus subjective, and (3) mass scales differently to size and is therefore more important in predicting aerial foraging success due to gravity. We studied vertical web asymmetry in a giant orb web spider, Nephila pilipes, across a wide range of size classes/developmental stages and tested the hypothesis that vertical web asymmetry (measured as hub displacement) is affected by gravity. On a sample of 100 webs, we found that hubs were more displaced in heavier and larger juveniles and that spider mass explained vertical web asymmetry better than other measures of spider size (carapace and leg lengths, developmental stage). Quantifying web shape via the ladder index suggested that, unlike in other nephilid taxa, growing Nephila orbs do not become vertically elongated. We conclude that the ontogenetic pattern of progressive vertical web asymmetry in Nephila can be explained by optimal foraging due to gravity, to which the opposing selective force may be high web-building costs in the lower orb. Recent literature finds little support for alternative explanations of ontogenetic orb web allometry such as the size limitation hypothesis and the biogenetic law.  相似文献   

3.
Most orb web spiders face downward on the web hub, and their webs are vertically asymmetrical, that is, the lower part of the web is larger than the upper part and the ratio of the lower part to the whole web area increases as the spider grows. This phenomenon may reflect biogenetic law such that young animals exhibit a general ancestral trait whereas adults exhibit specific and derived traits. An alternative explanation is that vertical asymmetry may arise from the difference in time required by spiders to move up or down the web to capture prey. The present study tested these two hypotheses for Eriophora sagana. Subadults of this species build their webs with reverse asymmetry in that the upper part of the web area is larger than the lower part. In both subadults and adults, the upper proportion decreased with spider weight, and adult spiders built more symmetric webs. These results support the capture time difference hypothesis.  相似文献   

4.
Animals obtain information from past foraging experience to adjust their foraging activity according to their environment. The ability of spiders to obtain information from unsuccessful predation experiences was investigated by examining the effects on web building, a significant foraging investment, of prey detection without successful capture in the orb-web spider Cyclosa octotuberculata. Four treatments were employed: (1) successful capture and feeding: one syrphid fly was allowed to be captured and consumed by the spider on the web; (2) single prey-item detection: a syrphid fly was placed on the web to lure the spider, but was removed before capture; (3) five prey-item detection: above prey-item detection stimulus was given five times; and, (4) control: neither prey nor feeding on the web. While control spiders decreased the total thread length and capture area of their webs, prey-item detection spiders in both conditions increased them, indicating that the spider obtained information from unsuccessful predation experience to adjust their foraging investment. The fed spiders exhibited a significantly greater increase than the prey-detection-only spiders, suggesting that prey detection alone and prey detection with consumption had different informational effects. Total thread length did not differ between single and five prey-item detection spiders, but distance between two adjacent sticky spirals increased only in the former spiders, possibly because five times unsuccessful predations prevented spiders to reduce web stickiness. It suggests that the spider changed web morphology according to the number of prey detection.  相似文献   

5.
The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.  相似文献   

6.
Most orb-web spiders face downwards in the web. A downward orientation has been proposed to be the optimal strategy because spiders run faster downwards and thus can catch prey quicker. Consequently, orb-web spiders also extend their web in the lower part, leading to top-down web asymmetry. Since the majority of orb-web spiders face downwards, it has been difficult to test the effect of orientation on prey capture and web asymmetry. In this study, we explored the influence of reverse orientation on foraging efficiency and web asymmetry in Verrucosa arenata, a neotropical orb-web spider that faces upwards in the web. We show that reverse orientation does not imply reverse web asymmetry in this species. V. arenata spiders captured more prey in the lower part of the web but more prey per area on the upper part. The average running speeds of spiders did not differ between upward and downward running, but heavier spiders took longer to capture prey while running upwards. We discuss these findings in the context of foraging efficiency and web asymmetry.  相似文献   

7.
The origin of viscid capture silk in orb webs, from cribellate silk-spinning ancestors, is a key innovation correlated with significant diversification of web-building spiders. Ancestral cribellate silk consists of dry nanofibrils surrounding a stiff, axial fiber that adheres to prey through van der Waals interactions, capillary forces, and physical entanglement. In contrast, viscid silk uses chemically adhesive aqueous glue coated onto a highly compliant and extensible flagelliform core silk. The extensibility of the flagelliform fiber accounts for half of the total work of adhesion for viscid silk and is enabled by water in the aqueous coating. Recent cDNA libraries revealed the expression of flagelliform silk proteins in cribellate orb-weaving spiders. We hypothesized that the presence of flagelliform proteins in cribellate silk could have allowed for a gradual shift in mechanical performance of cribellate axial silk, whose effect was masked by the dry nature of its adhesive. We measured supercontraction and mechanical performance of cribellate axial silk, in wet and dry states, for two species of cribellate orb web-weaving spiders to see if water enabled flagelliform silk-like performance. We found that compliance and extensibility of wet cribellate silk increased compared to dry state as expected. However, when compared to other silk types, the response to water was more similar to other web silks, like major and minor ampullate silk, than to viscid silk. These findings support the punctuated evolution of viscid silk mechanical performance.  相似文献   

8.
Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders’ behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.  相似文献   

9.
Caching or storing surplus prey may reduce the risk of starvation during periods of food deprivation. While this behaviour occurs in a variety of birds and mammals, it is infrequent among invertebrates. However, golden orb-web spiders, Nephila edulis, incorporate a prey cache in their relatively permanent web, which they feed on during periods of food shortage. Heavier spiders significantly reduced weight loss if they were able to access a cache, but lost weight if the cache was removed. The presence or absence of stored prey had no effect on the weight loss of lighter spiders. Furthermore, N. edulis always attacked new prey, irrespective of the number of unprocessed prey in the web. In contrast, females of Argiope keyserlingi, who build a new web every day and do not cache prey, attacked fewer new prey items if some had already been caught. Thus, a necessary preadaptation to the evolution of prey caching in orb-web spiders may be a durable or permanent web, such as that constructed by Nephila.  相似文献   

10.
Why do kleptobiotic spiders of the genus Argyrodes seem to be associated with spiders of the genus Nephila worldwide? Observations following introduction of experimental insect prey of different sizes and weights on to host webs revealed that: (1) small prey are more effectively retained on the web of Nephila clavipes than on the web of another common host, Leucauge venusta. (2) N. clavipes did not consume small prey that accumulated on the web whereas larger, heavier prey were enveloped and stored. (3) We observed clear partitioning of prey items between N. clavipes and Argyrodes spp.; diet selection by Argyrodes did not overlap with that of N. clavipes but closely overlapped with that of L. venusta. (4) L. venusta responds very quickly to prey impact whereas N. clavipes is slower, offering a temporal window of opportunity for Argyrodes foraging. (5) The ability of L. venusta to detect and respond to small items also means that it acts aggressively to Argyrodes spp., whereas N. clavipes does not. Consequently, food-acquisition behaviours of Argyrodes were clearly less risky with N. clavipes compared with L. venusta. We conclude that when a kleptobiotic organism has a choice of various host species, it will opt for the least risky host that presents the highest rate of availability of food items. The fact that Nephila species present such characteristics explains the worldwide association with Argyrodes kleptobiotic spiders.  相似文献   

11.
The orb-weaving spider Nephila edulis incorporates into its web a band of decaying animal and plant matter. While earlier studies demonstrate that larger spiders utilise these debris bands as caches of food, the presence of plant matter suggests additional functions. When organic and plastic items were placed in the webs of N. edulis, some of the former but none of the latter were incorporated into the debris band. Using an Y-maze olfactometer, we show that sheep blowflies Lucilia cuprina are attracted to recently collected debris bands, but that this attraction does not persist over time. These data reveal an entirely novel foraging strategy, in which a sit-and-wait predator attracts insect prey by utilising the odours of decaying organic material. The spiders habit of replenishing the debris band may be necessary to maintain its efficacy for attracting prey.  相似文献   

12.
All species included in the Polysphincta genus-group develop as ectophagous parasitoids of active spiders, killing their hosts prior to pupation. However, little information regarding natural history and ovipositing behavior of most species are available. In this study we inspected 85 webs of Araneus omnicolor to evaluate the frequency of parasitism and host size preferences of the wasp Hymenoepimecis sp. We also described the web characteristics of normal and parasitized spiders and the wasp ovipositing behavior. About 41% of the adult females of A. omnicolor inspected were parasitized. The highest incidence of parasitism was observed among relatively small females while no egg or larva was found in large individuals. Araneus omnicolor builds a strong web composed of an orb and barrier threads, where the spider rests within a curled leaf. The parasitoid larva builds its cocoon within this refuge, and modified cocoon webs were not observed. The ovipositing behavior of Hymenoepimecis sp. was very similar to that of Hymenoepimecis argyraphaga parasitizing Leucauge argyra, including the position of the sting, the killing of a previously attached larva, and the expelling of the egg from the base of the ovipositor.  相似文献   

13.
Leg loss is a common phenomenon in spiders, and according to the species 5% to 40% of the adults can present at least one missing leg. There is no possibility of regeneration after adult moult and the animal must manage with its missing appendages until its death. With the loss of one or more legs, female orb-weaving spiders can be penalized twice: firstly, because the legs are necessary for web construction and secondly, the legs are essential for the control of the prey after its interception by the web. During development, spiders may be also penalized because regeneration has energetic costs that take away resources for survival, growth and reproduction. All these consequences should influence negatively the development of the spider and thus its fitness. We investigated the impact of leg loss in the orb-weaving spider, Zygiella x-notata by studying its frequency in a natural population and web building and prey capture behaviours in laboratory. In field populations, 9.5% to 13%, of the adult females presented the loss of one or more legs; the majority of individuals had lost only one leg (in 48% of cases, a first one). Leg loss seems to affect all the adult spiders, as there is no difference of mass between intact spiders and those with missing leg. Data obtained with laboratory-reared spiders, showed that the loss of legs due to the moult is rare (less than 1%). Considering changes in web design, spiders with missing legs decreased their silk investment, increased the distance between spiral turns but did not change the capture surface of the web. Under our laboratory experimental conditions, spiders with one or two lost legs did not present any difference in prey capture efficiency. In laboratory conditions, spiders with lost leg(s) did not show any difference in egg sac production or in longevity (adult lifespan) compared to intact spiders.  相似文献   

14.
Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal’s body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.  相似文献   

15.
Orb-weaving spiders construct webs with adhesive silk but are not trapped by it. Previous studies have attributed this defense to an oily coating on their legs that protects against adhesion or, more recently, to behavioral avoidance of sticky lines. The old evidence is very weak, however, and the behavioral avoidance explanation is inadequate because orb-weavers push with their hind legs against sticky lines hundreds or thousands of times during construction of each orb and are not trapped. Video analyses of behavior and experimental observations of isolated legs pulling away from contact with sticky lines showed that the spider uses three anti-adhesion traits: dense arrays of branched setae on the legs that reduce the area of contact with adhesive material; careful engagement and withdrawal movements of its legs that minimize contact with the adhesive and that avoid pulling against the line itself; and a chemical coating or surface layer that reduces adhesion.  相似文献   

16.
In numerous spider species, reproductive success of adult females has been shown to be positively correlated with their body mass. We suggest, however, that spiders may incur greater foraging costs as their body mass increases due to the numerous and complex locomotor bouts needed to build an orb-web. Such a body-mass-dependent cost should, in turn, affect the web-building decisions of spiders. In the laboratory, we tested the influence of body mass on energetic expenditure (measured as mass loss) during web-building behavior in Zygiella x-notata. Our results showed (1) that energetic costs associated with web-building were closely related to body mass and to web-building activity, and (2) that as their body mass increased, spiders reduced the amount of silk used per web, while their foraging effort simultaneously increased. This work gives new insights into web-building behavior and energy allocation strategies of weaving spiders.  相似文献   

17.
Increased urbanisation is leading to a rise in light pollution. Light pollution can disrupt the behaviour and physiology of animals resulting in increased mortality. However, animals may also benefit from artificial light sources, as these may aggregate prey or signal suitable environments. For example, spiders are commonly seen congregating around artificial light sources. Changes in selective pressures engendered by urban environments are driving changes in urban organisms, driving better adaptation to these environments. Here, we ask whether urban populations of the synanthropic spider Steatoda triangulosa show different responses to light compared to rural populations. Egg-sacs from urban and rural populations were collected and incubated in a common garden setting, and the emerging spiderlings tested for light preference. While rural spiderlings avoided light (37% built webs in the light), urban spiderlings were indifferent to it (49% built webs in the light). Reduced light avoidance may benefit spiders through increased prey capture, increased movement into suitable habitats, or due to a release from selection pressure from visually hunting predators which do not enter buildings.  相似文献   

18.
The glue-coated and wet capture spiral of the orb web of the garden cross spider Araneus diadematus is suspended between the dry silk radial and web frame threads. Here, we experimentally demonstrate that the capture spiral is electrically conductive because of necks of liquid connecting the droplets even if the thread is stretched. We examine how this conductivity of the capture spiral may lead to entrapment of charged airborne particles such as pollen, spray droplets and even insects. We further describe and model how the conducting spiral will also locally distort the Earth's ambient electric field. Finally, we examine the hypothesis that such distortion could be used by potential prey to detect the presence of a web but conclude that any effect would probably be too small to allow an insect to take evasive action.  相似文献   

19.
Latitude, rainfall, and productivity have been shown to influence social organisation and level of sociality in arthropods on large geographic scales. Social spiders form permanent group-living societies where they cooperate in brood care, web maintenance, and foraging. Sociality has evolved independently in a number of unrelated spider genera and may reflect convergent evolutionary responses to common environmental drivers. The genus Anelosimus contains a third of approximately 25 described permanently social spider species, eight to nine species that all occur in the Americas. To test for environmental correlates of sociality in Anelosimus across the Americas, we used logistic regression to detect effects of annual rainfall, productivity, and precipitation seasonality on the relative likelihood of occurrence of social and non-social Anelosimus spiders. Our analyses show that social species tend to occur at higher annual rainfall and productivity than non-social species, supporting the hypothesised effects of these environmental variables on the geographical distribution of social species. We did not find support for the hypothesis that permanently social species occur in areas with low precipitation seasonality. High annual precipitation and, to less extent, high productivity favour the occurrence of permanently group-living Anelosimus spiders relative to subsocial and solitary species. These results are partially consistent with previous findings for the Old World spider genus Stegodyphus, where a link between high habitat productivity and sociality was also found. Unlike Anelosimus, however, Stegodyphus typically occur in dry habitats negating a general importance of high precipitation for sociality. Sociality in spiders thus seems to be strongly linked to productivity, probably reflecting the need for relatively high availability of large prey to sustain social colonies.  相似文献   

20.
This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号