首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
复合硫酸铝控制滇池内源磷释放的有效性   总被引:1,自引:1,他引:0  
在滇池福保湾重污染区域修建两个6m×6m围隔,向其中投加适量硫酸铝,利用原位钝化技术控制内源磷释放。通过采集柱状芯样,采用室内静态模拟沉积物PO43--P的释放,测定表层沉积物松散结合态磷含量。对照围隔表层沉积物中松散结合态磷含量(27.68~38.55mg/kg)约为硫酸铝处理围隔(11.09~13.85mg/kg)的3倍。结果表明,投加硫酸铝可有效抑制底泥中PO43--P的释放,显著降低表层底泥不稳态磷含量。  相似文献   

2.
海河沉积物中磷释放的模拟研究   总被引:9,自引:4,他引:5  
在实验室条件下,分别对海河沉积物中磷的释放量与沉积物磷形态分布的关系及好氧/厌氧条件,pH,温度,外源磷含量,微生物活动等环境因素对其的影响进行了模拟研究. 结果表明,微生物作用是影响海河沉积物中磷释放量的主要因素;厌氧条件下,磷从沉积物向水体的释放量远高于好氧条件下沉积物磷的释放量;温度升高有利于沉积物中磷的释放;酸性和碱性条件下沉积物磷的释放量略高于中性条件下沉积物磷的释放量;当上覆水磷含量较高时,沉积物中的磷呈“负释放"状态. 研究还显示,沉积物中不同形态的磷含量与沉积物磷释放量有不同程度的相关性,其中可交换态磷(NH4Cl-P)和可还原态磷(BD-P)含量与沉积物磷的释放量高度相关(R2分别为0.99和0.84).   相似文献   

3.
研究了长江中下游几个浅水湖泊表层沉积物磷吸附等温线和沉积物对磷的吸附/解吸平衡质量浓度.结果表明沉积物对磷的吸附等温线同时符合Langmuir模型和Freundlich模型.据Langmuir模型计算,沉积物对磷的吸附容量为0.122~0.893 mg/g,且吸附容量与Al2O3,TFe2O3和有机磷(O-P)的含量均有较好的正相关关系.沉积物对磷的吸附存在吸附/解吸平衡点,不同沉积物在该点质量浓度为0.02~0.45 mg/L,有较大差异.该值与沉积物中总磷及无机磷有很好的正相关关系,与铁/铝磷及有机磷和有机质含量也有较好的正相关关系,而与钙磷及氧化钙只有较弱的正相关关系.结果还表明富营养化严重的湖泊,沉积物有向上覆水释放磷的趋势.  相似文献   

4.
以聚合硫酸铁(PFS)为絮凝剂,单宁酸为助凝剂回收污泥溶解液中的磷。研究结果表明:在铁盐投加量为160mg/L,pH为8,单宁酸投加量为10 mg/L条件下,磷酸盐的回收率可达到97.0%。单宁酸促进了混凝沉淀物中磷的释放,表明利用该方法回收磷作为缓释肥的可行性。将沉淀物作为缓释磷肥施用于土壤中能够明显促进黑麦草的生长。  相似文献   

5.
在实验室条件下,分别对海河沉积物中磷的释放量与沉积物磷形态分布的关系及好氧/厌氧条件,pH,温度,外源磷含量,微生物活动等环境因素对其的影响进行了模拟研究. 结果表明,微生物作用是影响海河沉积物中磷释放量的主要因素;厌氧条件下,磷从沉积物向水体的释放量远高于好氧条件下沉积物磷的释放量;温度升高有利于沉积物中磷的释放;酸性和碱性条件下沉积物磷的释放量略高于中性条件下沉积物磷的释放量;当上覆水磷含量较高时,沉积物中的磷呈“负释放”状态. 研究还显示,沉积物中不同形态的磷含量与沉积物磷释放量有不同程度的相关性,其中可交换态磷(NH4Cl-P)和可还原态磷(BD-P)含量与沉积物磷的释放量高度相关(R^2分别为0.99和0.84).  相似文献   

6.
稳定剂控制底泥中磷元素释放的机理性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以河流富磷底泥为试验对象,研究4 种稳定剂对底泥磷元素释放的抑制效果和机理.结果表明,高锰酸钾和过氧化氢控制底泥释磷的持续性较差,投加高锰酸钾后底泥孔隙水的正磷酸根含量比对照高出0.344mg/L,过氧化钙和硝酸钙能够稳定地抑制底泥中磷的释放,可将孔隙水磷酸盐浓度分别降低至0.003,0.094mg/L.高锰酸钾和过氧化氢不能有效地降低底泥中NaOH-P 含量,过氧化钙和硝酸钙主要通过提高HCl-P 含量来控制磷的释放.  相似文献   

7.
采用光学散射絮凝度测定仪(IPDA2000型)研究3种典型混凝剂(PAC、PFS、FeCl_3)在不同pH值和混凝剂投加量下处理带正电胶粒时的絮体絮凝特性、絮体强度以及破碎后恢复性能。结果表明:过低和过高的pH值及投加量都不利于絮体形成;PAC投加量50 mg/L(pH=8.5),PFS投加量50 mg/L(pH=8),FeCl_3投加量30 mg/L(pH=7)条件下,絮凝速度最快,絮体尺寸最大,且FeCl_3絮体的稳定尺寸为PAC和PFS的1.5倍,絮体形成速度更快,达到最优条件需要碱度更低。投药量是影响絮体强度和恢复性能的重要因素,随着投加量增加,FeCl_3、PFS、PAC絮体强度增大,但恢复性能降低;同条件下FeCl_3的恢复因子为PFS和PAC的0.5倍。  相似文献   

8.
高铁酸钾水处理剂的制备及稳定性研究   总被引:1,自引:0,他引:1  
通过次氯酸盐氧化法制备高铁酸钾的工艺,探讨了次氯酸盐浓度、铁盐投加量、反应温度等对高铁酸钾纯度、产率的影响,研究发现当初始ClO-浓度为137.3g/L,除盐工序温度控制在10℃左右,铁盐投加量为化学计量的30%时,可得到纯度为96.4%、产率为45.3%的高铁酸钾固体.用XRD、FIRT和SEM对高铁酸钾进行了表征分析.初步研究了高铁酸钾母液中KOH、KCl、KNO3、Fe(NO3)3、KClO等杂质对高铁酸钾溶液稳定性的影响,结果表明碱度越高,高铁酸钾溶液稳定性越强, KCl、KNO3使高铁酸钾溶液稳定性略有降低, KClO对高铁酸钾溶液具有强稳定性,三价铁盐的存在能促进高铁酸钾溶液的快速分解.  相似文献   

9.
K+对Fe(Ⅵ)生成的稳定促进作用和机理研究   总被引:1,自引:0,他引:1  
研究了在生成高铁酸盐反应过程中K 对Fe(Ⅵ)的稳定促进作用和机理.结果表明,当反应温度大于50℃时.K 比Na 更有利于高铁酸盐的生成.K 促进高铁酸盐溶液生成的最佳反应温度为65℃.在生成高铁酸盐反应过程中,增加K 浓度能提高高铁酸盐的产率,并且随着硝酸铁投加量的增加,K 影响显著.在硝酸铁投加量为85 g/L时,采用4.4 mol/L KOH制备的Fe(Ⅵ)浓度为0.05 mol/L;加入2 mol/L K 后,Fe(Ⅵ)浓度增加到0.15 mol/L.K 对高铁酸盐溶液生成浓度的影响在硝酸铁投加量大于75 g/L,反应温度低于55℃,CIO-浓度低于1.16 mol/L时较为显著.K 在一定程度上可替代部分碱度,降低OH-用量.在反应过程中K 能包裹在FeO24-周围,减少Fe3 与FeO24- 接触,从而减缓Fe3 对FeO24-的催化分解作用;同时K 能与FeO24-生成K2 FeO4)晶体沉淀析出,降低溶液中FeO24-浓度,Fe(Ⅵ)分解速率减缓,稳定性增加,Fe(Ⅵ)生成浓度增加.  相似文献   

10.
底泥磷释放是导致水体富营养化的主要原因之一,本文通过在样泥中分别投加0、0.01和0.02 mol·L-1Ca(OH)2溶液,同时进行微臭氧曝气(0.6 g·min-1),研究了曝气加氢氧化钙复合技术抑制底泥磷释放的效果及对底泥微生物多样性的影响.结果显示,投加0.02 mol·L-1Ca(OH)2组上覆水中总磷(TP)浓度的最终值与对照组相比,抑制率达到34%;从各形态磷的角度进一步分析发现,与对照组相比,该组底泥中可溶性磷和铁磷含量分别降低了92%和60%,其最终转化为钙磷是该技术的关键.通过聚合酶链式反应-变性梯度凝胶电泳技术(PCRDGGE)研究发现,各试验组微生物相似性在65%~85%之间;Berger-Parker优势度指数、Margalef丰富度指数、Shannon多样性指数变化不明显,表明该技术不会影响底泥微生物多样性.  相似文献   

11.
小兴凯湖表层底泥磷吸附容量及潜在释放风险   总被引:3,自引:0,他引:3  
利用沉积物磷吸附指数(PSI)和磷吸附饱和度(DPS)研究了小兴凯湖表层沉积物的磷吸附容量,分析了沉积物中磷的吸附饱和度(DPS)与其他指标的相关关系,并讨论了不同采样点湖泊沉积物中磷的潜在释放风险.结果表明:13个采样点的表层沉积物的PSI为9.78~197.53(mg?L)/(100g?μmol),平均值为59.77(mg?L)/(100g?μmol);DPS为9.95%~24.47%,平均值为15.41%.PSI与草酸铵提取的磷(Pox)极显著正相关,与草酸铵提取的铁、铝(Feox,Alox)显著正相关,草酸铵提取的铁是影响PSI的主导因素;DPS主要受沉积物中原有吸附态磷的影响.此外,磷释放风险指数(ERI)8.99%~129.94%的计算结果表明:小兴凯湖表层沉积物中磷释放诱发富营养化的风险处于高度风险范围,其中,受农业面源污染影响较大的北岸区域相比其他区域发生富营养化的风险更高.  相似文献   

12.
将镜泊湖分为北部湖区、中部湖区、东部湖区、西部湖区、南部湖区共设置23个表层沉积物采样点和10个沉积柱芯采样点,采用The Standards,Measurements and Testing Programme (SMT)法测定沉积物中总磷(TP)、无机磷(IP)、有机磷(OP)、铁/铝结合态磷(NaOH-P)、钙结合态磷(HCl-P).分析镜泊湖沉积物各形态磷的来源、空间分布特征和对磷释放的贡献.结果表明,镜泊湖湖区沉积物各形态磷有3个主要成分,其中成分1主要代表生活污水和工业废水,主成分2主要代表农业污染,主成分3主要代表碎屑岩、自生磷灰石和含磷矿物质等;镜泊湖沉积物各形态磷的空间分布具有一定的空间差异性,分布特征受镜泊湖水文特征和人类活动影响较大.湖区沉积物各形态磷含量整体而言随深度的增加不同程度的下降;对沉积物不同形态磷的磷释放贡献进行分析,分析表明,镜泊湖各湖区沉积物短时间尺度内以滞留为主,但在长时间尺度下具有一定的释放风险.  相似文献   

13.
太湖沉积物磷形态及pH值对磷释放的影响   总被引:67,自引:3,他引:64  
对太湖不同营养水平和不同特征的 4 种沉积物的总磷、磷形态、粒径组成、化学组成进行了分析,模拟研究了不同 pH 值对上覆水体中总溶解性磷和溶解性活性磷含量的影响.结果表明,太湖沉积物样品总磷含量在 336.1~3408.01mg/kg,属于中富营养化到极富营养化水平.pH 值是影响磷释放的重要因素,碱性条件下,促进NaOH-P 的释放;酸性条件下,促进 HCl-P的释放.严重富营养化湖区沉积物的磷主要由无机磷组成,其中主要是 NaOH-P,该区中 pH值增加会导致磷释放量的大幅度增加,而 pH值下降对磷释放量的影响较小.中富营养化湖区沉积物的无机磷组成中,部分湖区 NaOH-P 含量高,部分湖区 HCl-P 含量高,所以该区中 pH 值变化对沉积物磷释放的影响,由于 NaOH-P 和HCl-P 含量不同而存在差异,NaOH-P含量较高,pH值增加会导致磷释放量的大幅度增加;HCl-P 含量较高,pH值下降会导致磷释放量的大幅度增加.  相似文献   

14.
分析了巢湖表层和柱状沉积物中磷(P)、铁(Fe)和硫(S)元素的形态组成、分布、相互关系及其指示的湖泊环境变化.西半湖S3采样点位柱状沉积物总磷(TP)记录表明,巢湖西半湖区自20世纪60年代开始受人类活动影响逐步明显,其中钙磷(Ca-P)指示的流域径流输入增加早于铁铝磷(Fe/Al-P)指示的居民生活污水输入;西半湖区沉积物15~0cm有机质埋藏持续增加伴随着pH值的逐步升高,指示了水体富营养化导致藻类生产力(光合作用)提高并显著影响pH值;而东半湖S7采样点位柱状沉积物磷形态则记录了东半湖区不同的环境变化特征.巢湖沉积物活性铁组分以Fe (Ⅱ)为主,S3和S7沉积剖面Fe (Ⅲ)/Fe (Ⅱ)值整体均呈上升趋势且与Fe (Ⅲ)同步变化,表明其比值由Fe (Ⅲ)变化驱动;Fe (Ⅲ)/Fe (Ⅱ)指示沉积物上层为弱氧化性,其余层位为还原性环境.沉积物还原性无机硫(RIS)以酸可挥发性硫(AVS)为主,沉积物高有机质含量、低元素硫和还原条件降低了AVS向黄铁矿硫(CRS)的转化.巢湖沉积物中与P,S结合的Fe占比很小,高Fe/P和Fe/S比值会抑制沉积物磷的释放,导致柱状剖面P,Fe和S之间的相互作用关系整体上并不显著.  相似文献   

15.
采用深水表层沉积物采样器采集海河干流8个断面的表层沉积物,测定不同粒径表层沉积物的总磷(TP)、总铁(TFe)和有机质(OM)含量,并采用多元线性回归分析方法对TP与TFe和OM含量进行相关性分析.结果表明:海河干流表层沉积物的颗粒组成除光华桥断面分布较均匀外,其余各断面主要以砂粒(>54%)为主;沉积物的TP含量为29.00~78.99 μmol/g,TFe含量为595.67~719.91 μmol/g,w(OM)为3.77%~8.79%;同一断面不同粉砂粒之间的TP,TFe和OM含量没有显著性差异(P>0.05),而不同断面之间的差异十分显著(P<0.01).TP与OM和TFe的相关分析结果显示:除金刚桥、外环河桥与中心桥外,其余断面的TP与TFe和OM均具有良好的相关性(R2>0.85).   相似文献   

16.
刘国锋  钟继承  何俊  张雷  范成新 《环境科学》2009,30(9):2520-2526
对因藻华大量聚集死亡而造成水体呈强还原环境(DO=0.14 mg.L-1,Eh=-89.3 mV)的黑水团区中Fe-S-P的生物地球化学变化特征进行研究.结果表明,藻细胞残体的沉降使得黑水区沉积物表层有机质含量显著增加;因藻细胞残体的贡献,沉积物表层中Org-P含量急剧增加(比非黑水区多72 mg.kg-1);受较低Eh的影响,沉积物中与Fe结合的磷出现解析,使得黑水区沉积物中活性铁和PO43--P含量增加,黑水区中沉积物间隙水PO43--P要远高于非黑水团区,表明其有向上覆水释放的趋势;造成沉积物中Fe-P含量比非黑水区中的要低.在强还原条件下沉积物中铁的氧化物呈现出由结晶态向无定形态转化的趋势(Dithio-Fe比非黑水区高达30μmol.g-1),从而使得可供生物利用的活性铁含量增加,这为藻华再次发生提供了有利条件.黑水区表层沉积物中酸可挥发性硫化物(AVS)在初始阶段大量增加,但后期由于形成了H2S气体逸散到水体中其含量反而减少;表层沉积物硫化物含量也呈增加现象(比非黑水区表层沉积物中要高50μmol.g-1).  相似文献   

17.
IntroductionAsanessentialelementforalgalgrowth ,ironplaysanimportantroleintheeutrophicationoflakesandotherwaters .Theroleofironinalgalgrowthmainlyliesinitsphysiologicalfunctionssuchaselectrontransport,oxygentransportorrespirationandfermentation (APHA ,1 975;Trudinger,1 979;Zhou ,1 998a) .Usually,ironispresentinenvironmentinrelativelyhighconcentrations .Incrustalabundance,ironranksfourthinnumber,onlybehindoxygen ,siliconandaluminium(Wedepohl,1 971 ) .However,ironisrelatively“scarce”intheb…  相似文献   

18.
山东省南四湖底泥中磷的形态分布特征   总被引:14,自引:1,他引:13       下载免费PDF全文
利用分级提取法分析了山东省南四湖下级湖区及其主要入湖河流底泥中磷的化学形态,并研究了磷在表层沉积物与沉积柱芯中的形态分布规律.结果表明,表层沉积物中各形态磷的空间分布规律不明显,且含量存在较大的差异.表层沉积物中活性磷(可交换态磷、铝结合态磷、铁结合态磷三者之和)的含量占总提取磷的 41%~65%,提示沉积物中磷的生物可利用性较高.沉积物柱芯中活性磷含量较大,以交换态磷和铁结合态磷为主,铝结合态磷含量较少;闭蓄态磷、自生磷、碎屑磷和有机磷在垂向上的含量分布较为稳定,有机磷含量最低.在表层沉积物和沉积柱芯中无机磷占绝对优势,表明南四湖底泥主要为无机相沉积.  相似文献   

19.
铁刨花在控制水体磷内源释放中的应用研究   总被引:1,自引:1,他引:0  
从水体沉积物中磷的内源释放入手,来寻求控制水体富营养化的有效手段越来越受到研究者的广泛关注。实验考察了加铁反应器与空白对照反应器中上覆水体总磷浓度和pH的变化,并分析了底泥中水溶性磷、G法各种形态提取磷以及全磷含量变化。结果表明,利用廉价易得的废弃铁刨花,能够有效降低水体中溶解性正磷酸盐浓度,富营养化水体总磷浓度从0.64mg/L降至0.16mg/L,且底泥间隙水中磷酸盐浓度的释放问题也得到有效控制。  相似文献   

20.
采用连续分级提取法研究沉积物中磷的化学形态   总被引:5,自引:0,他引:5       下载免费PDF全文
沉积物中磷的潜在释放很大程度上取决于有机磷和无机磷的组分和分布. 为研究沉积物中不同形态磷的释放能力及其生物可利用性大小,采用连续分级提取法,以NH4Cl、NaHCO3、NaOH和HCl作为提取剂,同时对沉积物中有机磷和无机磷的赋存形态进行分析,将无机磷分为WA-Pi(弱吸附态无机磷)、PA-Pi(潜在活性无机磷)、Fe/Al-Pi(Fe/Al结合态无机磷)和Ca-Pi(Ca结合态无机磷);将有机磷分为WA-Po(弱吸附态有机磷)、PA-Po(潜在活性有机磷)、MA-Po(中活性有机磷)和NA-Po(非活性有机磷),并以蠡湖表层沉积物样品为例,考察了该方法的回收率及蠡湖沉积物中的磷形态. 结果表明:①该方法具有较好的回收率,与SMT(标准测量和测试)法测定结果比较,连续分级提取法对TP、无机磷、有机磷的回收率分别为93.3%~112.1%、93.9%~111.5%、76.4%~119.9%,平均值分别为99.4%、101.8%、101.0%. ②蠡湖表层沉积物中的磷以无机磷为主,其质量分数在271.29~666.34 mg/kg之间,平均值为441.03 mg/kg,占w(TP)的62.91%;不同形态无机磷质量分数表现为w(Ca-Pi)>w(Fe/Al-Pi)>w(PA-Pi)>w(WA-Pi). 有机磷的质量分数在201.76~368.52 mg/kg之间,不同形态有机磷质量分数表现为w(R-Po)(R-Po为残渣态磷)>w(NANaOH-Po)(NANaOH-Po为NaDH提取非活性有机磷)>w(PA-Po)>w(MAHCl-Po)(MAHCl-Po为HCl提取中活性有机磷)>w(WA-Po)>w(MANaOH-Po)(MANaOH-Po为NaOH提取中活性有机磷). 改进后的连续分级提取法能够同时有效分离沉积物中无机磷和有机磷的化学形态,并且能兼顾沉积物生物可利用性磷分析测试的需要.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号