首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 31 毫秒
1.
城市垃圾焚烧飞灰特性及水泥固化试验研究   总被引:7,自引:5,他引:7  
试验分析了重庆市某城市垃圾焚烧发电厂飞灰的化学成分,研究了原飞灰的浸出毒性,考察了水泥对原飞灰和酸洗预处理飞灰中重金属的固化效果. 结果表明:飞灰中重金属Pb和Zn的浸出质量浓度均超过《危险废物浸出毒性鉴别标准》(GB5085.3-2007),因而被认为是危险废物,必须对之进行稳定化处理;酸洗预处理飞灰固化试块的抗压强度得到了一定程度的提高,其重金属Pb和Zn的浸出毒性均较相同配比、相同养护时间的原飞灰固化试块有明显降低;酸洗预处理飞灰固化试块抗压强度随掺入飞灰比例的降低和养护时间的延长而加大,在养护28 d时其抗压强度最高,达4.25 MPa;酸洗预处理飞灰固化试块在养护28 d时,其重金属Pb和Zn的浸出质量浓度分别比原飞灰所制固化试块降低了10.6%~59.0%和7.4%~73.7%.   相似文献   

2.
试验分析了重庆市某城市垃圾焚烧发电厂飞灰的化学成分,研究了原飞灰的浸出毒性,考察了水泥对原飞灰和酸洗预处理飞灰中的重金属的固化效果. 结果表明,飞灰中重金属Pb和Zn的浸出质量浓度均超过《危险废物浸出毒性鉴别标准》(GB5085.3-2007),因而被认为是危险废物,必须对之进行稳定化处理;酸洗预处理飞灰固化试块的抗压强度得到了一定的提高,其重金属Pb和Zn的浸出毒性均较相同配比、相同养护时间的原飞灰固化试块有明显降低;酸洗预处理飞灰固化试块抗压强度随掺入飞灰比例的降低和养护时间的延长而加大,在养护28 d时其抗压强度最高,达4.25 MPa;酸洗预处理飞灰固化试块在养护28 d时,其重金属Pb和Zn的浸出质量浓度分别比原飞灰所制固化试块降低了10.6%-59.0%和7.4%-73.7%.  相似文献   

3.
燃料式熔融固化垃圾焚烧飞灰的实验研究   总被引:3,自引:0,他引:3  
在以柴油为燃料的熔融炉中熔融固化垃圾焚烧飞灰,并对固化效果进行检验。进一步探讨了不同环境对飞灰固化效果的影响规律。结果表明飞灰熔融固化后就不再具有浸出毒性的危险废物;酸性(pH≤4.5)和碱性(pH≥11.5)环境对固化效果的影响比较大;潮湿的环境对固化效果无明显影响。  相似文献   

4.
在水泥固化时将生活垃圾焚烧飞灰(简称飞灰)以不同的比例代替复合硅酸盐水泥并且用垃圾渗滤液浓缩液代替水进行固化实验,研究了飞灰掺量(40%、50%、60%)、浓缩液替代水对水泥固化法固化效果及重金属(Zn、Pb、Cd、Cr、As、Ba)浸出的影响.结果表明:飞灰掺入量的增加会降低固化体的抗压强度,但浓缩液替代水对固化体的抗压强度没有显著影响.不同重金属的浸出行为受掺灰率的影响不同,掺灰率的增加会减少固化体中Zn的浸出,增加Pb和Cd的浸出,Zn、Pb、Cr、As在第36d可达到稳定浸出量不再增加,Ba的累积浸出量持续增加,加入浓缩液后固化体中Pb、Zn、Cd、Cr、As等重金属的浸出量未超过标准限值,可以满足固化处理对浸出毒性的要求.  相似文献   

5.
以启东市生活垃圾焚烧发电厂为例,对其焚烧飞灰固化物进行了含水质量分数、二噁英质量分数及重金属浸出毒性测试.结果表明:飞灰固化物含水质量分数、二噁英质量分数及重金属浸出毒性均满足生活垃圾填埋场进场要求,可以进入生活垃圾填埋场处置.  相似文献   

6.
随着十四五污染防治攻坚战总思路的提出,生活垃圾的治理已经成为全社会关注的热点.目前我国生活垃圾焚烧是城市生活垃圾处理的主要发展方向,但生活垃圾焚烧飞灰(以下简称飞灰)含有高浸出毒性的可溶性重金属对自然环境和人类健康存在潜在危害,是我国危废处理的重点和难点之一.飞灰以固化稳定化后进入生活垃圾填埋场分区填埋,是当前...  相似文献   

7.
典型固体废物焚烧飞灰的污染物特性研究   总被引:6,自引:1,他引:6       下载免费PDF全文
采用成分分析法和毒性监测法系统分析了来源于6类典型固体废物焚烧飞灰的污染物特性.研究表明,6类固体废物焚烧飞灰的主要组成元素有Si、 Ca、 Al、 Fe、 K、 Na、 Cl等.各重金属成分中,Zn是受试飞灰(除LS飞灰)中含量最高的重金属元素,范围在2100~32100 mg/kg,均值达9458 mg/kg;元素Cd、 Zn、 Cu、 Cr、 Ni、 Pb、 As平均值则分别为土壤中的各元素含量的642、 127、 22、 18、 15、 10、 2倍.国标硫酸硝酸法和TCLP浸出程序对飞灰中的重金属浸出率普遍偏低,仅其中2类工业废物焚烧飞灰在TCLP法下超出鉴别限值;虽然受试飞灰中二英类物质(PCDD/Fs)毒性当量均低于危险废物毒性物质含量鉴别(GB 5085.6-2007)有关二英类物质规定,但与浙江省部分地区污染土壤中的平均二英毒性当量进行比较,HZ、 WZ、 NB、 TZ和HUZ飞灰分别为其105、 59、 401、 369和5倍,除LS飞灰外其余5种飞灰的毒性当量值要大大高于加拿大、 新西兰和瑞典的土壤中二英的指导值.本研究结果说明不同焚烧厂飞灰化学组成存在很大差异;焚烧废物成分对飞灰中的重金属元素有一定的影响,但焚烧工艺过程是影响固体废物焚烧飞灰中重金属和二英分布和丰度的最主要因素.因此,无论是生活垃圾还是工业危险废物的焚烧飞灰均具有很大的潜在环境风险,处理或利用前必须对其性质进行充分调研.  相似文献   

8.

城市生活垃圾焚烧飞灰的环境安全利用处置已成为当前环境管理部门和行业部门亟待解决的问题。为降低焚烧飞灰中重金属对环境的潜在风险,以水洗飞灰为原料水热合成托贝莫来石,探讨Ca与(Si+Al)的摩尔比〔以Ca/(Si+Al)表示〕对水热产物的晶相组成、微观形貌和表面官能团的影响,研究水热过程中重金属(Hg、Ni、Pb、Zn和Cr)的浸出浓度、浸出率、液相迁移率、形态分布和环境风险的变化。结果表明:Ca/(Si+Al)对水热产物的类型具有重要影响,Ca/(Si+Al)的增加有利于抑制沸石类结构的生成,促进托贝莫来石的形成。随着托贝莫来石的形成,水热产物中5种重金属的毒性浸出浓度和浸出率逐渐降低,相较于水洗飞灰,在最佳比例为1.10的条件下水热产物中重金属的浸出浓度分别下降99.5%、99.0%、99.4%、88.9%和63.7%,浸出率低至0.25%、0.08%、0.01%、0.01%和2.73%,同时重金属向液相的迁移率仅为1.41%、4.28%、0.29%、0.05%和0%,表明大部分重金属均稳定地存在于固相产物中,而不是迁移至水热液中。这归因于托贝莫来石的形成增加了5种重金属残渣态的占比,降低了重金属的迁移性。风险评价指数(risk assesssment code,RAC)结果显示,最佳比例条件下水热产物中5种重金属的RAC均低于10%,达到环境低风险水平。综上,水热合成托贝莫来石是一种稳定焚烧飞灰中重金属很有前景的方法,为富含重金属的危险废物的安全处置和回收利用提供了一种可行的替代方案。

  相似文献   

9.
采用氯氧镁水泥对飞灰进行固化处理,分析了氯氧镁水泥对飞灰重金属离子的固化效果,探讨了影响因素,通过XRD、FTIR等手段表征了氯氧镁水泥固化/稳定化垃圾焚烧飞灰的水化产物。结果表明;在氯氧镁水泥在掺量为45%、MgO/MgCl2摩尔比为6∶1的条件下,固化体具有较好的抗压强度;养护28 d的抗压强度达到22.3 MPa,对垃圾焚烧飞灰中的重金属具有显著的固化/稳定化效果;固化体力学强度主要由针状518相(5Mg(OH)2·MgCl2·8H2O)和318相(3Mg(OH)2·MgCl2·8H2O)提供;为了主动抑制重金属的迁移,可以通过条状和块状结构的Mg(OH)2在飞灰颗粒表面的紧密贴合,也可以采用518相晶交叉包裹飞灰颗粒。  相似文献   

10.
针对冶金固废组分复杂且难以高附加值利用的特性,结合当前垃圾燃烧飞灰重金属污染现状,通过将两者混合进行熔融固化及成分重组,研究了重金属固化及浸出毒性.结果表明:随着温度升高,固化渣出现明显结块,且燃烧过程中矿物发生重组,Zn、Cu、Pb和Cr取代硅酸盐中Ca~(2+)、Al~(3+)等离子而被固熔于网状基体中,生成了Cu_6Zn_4Al_2O_4、FeCr_2O_4、Cd_(0.75)Zn_(0.25)Fe_2O_4、Zn(AlO0.5Fe1.5)O4、MgCr0.4Fe1.6O4及Cu0.5Zn0.5Fe2O4等物质;且随着温度升高,Ca-Fe-Si-O体系形成一种耐热硅酸盐稳定相CaFe_3(SiO_4)2OH,由于其覆盖或包裹住含有重金属的晶体,从而延缓并阻止了灰渣分解及重金属的浸出,降低了重金属对环境的污染.  相似文献   

11.
全烧垃圾流化床炉飞灰制备免烧砖的性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
开展了水泥固化全烧垃圾循环流化床焚烧炉飞灰特性及其制备免烧砖的研究.同时,分析了飞灰的特性,研究了水泥用量对砖体抗压强度和重金属浸出毒性的影响,并对固化前后飞灰在不同pH值溶液环境下的重金属渗滤特性和基于改进RCR连续提取法的重金属形态分布进行了对比研究.结果表明:飞灰中Cd、Cu、Pb、Ni的浸出浓度分别达到1.76、60.29、5.36、1.48 mg·L-1,远超出生活垃圾填埋标准的规定,Cd、Zn、Cu的酸可交换态部分很高,分别为48%、21.26%、20.72%.水泥基材具有良好的稳定效果,添加量达到30%时,免烧砖中重金属的浸出毒性已远低于标准值.随着水泥掺量的提高,免烧砖的抗压强度呈上升趋势,当水泥比例为30%时,强度可达到12.8 MPa,35%水泥比例的砖体,其抗压强度则达到国标建筑用砖的MU15级.与原始飞灰相比,砖体中重金属在不同渗滤液pH下的浸出趋势并未改变,浸出量却显著下降,pH的适应范围变宽.另外,重金属中酸可交换态部分降至低于1%,主要转变成了可还原态,对环境的污染风险大幅降低.  相似文献   

12.
DTCR协同水泥固化/稳定化重金属污染底泥的研究   总被引:2,自引:0,他引:2  
采用二硫代氨基甲酸盐(DTCR)为添加剂协同水泥固化/稳定化重金属污染底泥,以抗压强度和颗粒固化体(粒径£9.5mm)浸出毒性为指标确定水泥和DTCR的最优配比.通过酸雨条件(pH 3)下对颗粒固化体和整个固化体的浸出试验来评价固化/稳定化的效果.利用X射线衍射仪(XRD)和环境扫描电镜(ESEM)分析了固化/稳定化机理.结果表明,固化/稳定化的最优配比为水泥掺入量为50%(干底泥),DTCR掺入量为2%(干底泥).其固化体7d抗压强度为1.03MPa,颗粒固化体中重金属Cu,Zn,Pb,Cd的浸出浓度分别为0.105,4.65,0.232,0.123mg/L,能够达到安全填埋要求.酸雨条件下(pH 3)对颗粒固化体和整个固化体浸出研究表明,水泥、DTCR固化/稳定化底泥效果更好;XRD和ESEM分析表明,固化/稳定化的机理主要是水泥在水化反应时,能够形成水化产物Ca(OH)2、水化硅酸钙(C-S-H)和钙矾石(AFt),将重金属废物包容,并逐步硬化形成具有一定强度的水泥固化体.  相似文献   

13.
以苏州七子山生活垃圾焚烧厂产生的飞灰为研究对象,采用水泥作为固化剂,研究水泥飞灰固化体的应力应变特征及重金属浸出特性,并探讨了水泥飞灰配合比、养护时间等关键性因素对这些特性的影响。实验结果表明:较养护3 d的样品,其余养护时间的样品强度平均增长了约96.2%,而其破坏应变平均减小了56%。随着水泥含量和养护时间的增加,飞灰固化体的强度上升,而其破坏应变减小,该趋势主要归因于钙矾石(AFt)的形成促进了飞灰固化体强度的发展。较飞灰原样,飞灰固化体的重金属浸出浓度随着水泥含量、养护时间的增加而降低了38%~99%,重金属的迁移被限制,主要归因于水化硅酸钙(C—S—H)和钙矾石(AFt)的形成,以及飞灰和水泥水化反应创造的强碱性环境。  相似文献   

14.
用偏高岭石、铜矿尾砂、粉煤灰生产土聚水泥试验   总被引:1,自引:0,他引:1  
胡旭亮  成岳  苏晓渊 《环保科技》2011,17(1):37-40,43
以偏高岭石和固体废物铜矿尾砂、粉煤灰为基料,以氢氧化钠、水玻璃等作为激发剂,在室温条件下制备土聚水泥。通过正交试验,研究不同基料配比、激发剂、外加剂的不同加入量等因素对试条抗压强度的影响,并确定最优配方;同时通过SEM观察了土聚水泥的形貌并研究了土壤聚合的反应机理。结果表明:其最佳配方中铜矿尾砂、粉煤灰的质量比之和接近60%,7天抗压强度比标号为P.O42.5的水泥高5%;该土聚水泥呈层状结构,缝隙较小,结构紧密。  相似文献   

15.
垃圾焚烧飞灰的熔融特性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
以飞灰从开始熔融到熔渣全变成液体这一过程中的4个温度段所得到的熔渣为研究对象,探讨了它们的外观结构、成分、浸出毒性以及液固比、浸取液的pH值对熔渣中Ba、Cd、Ni等重金属浸出量的影响规律.结果表明:飞灰开始熔融后,随着温度的升高,熔渣的颜色逐渐变深、质地逐渐变硬、玻璃化现象逐渐明显,Ca、Al、Mg、K、Fe等主量元素的质量百分含量逐渐升高;熔融温度在1230℃以上所得到的熔渣不再是具有浸出毒性的危险废物;液固比对Ba、Zn、Cd和Ni的浸出量影响较大,而对As的影响较小;Ba、Cu、Pb和Zn等重金属元素在强酸和强碱环境下比较容易浸出.  相似文献   

16.
侯浩波 《环境工程》1995,13(6):37-40
本文针对粉煤灰水泥早强低,凝结硬化慢等缺点,根据水泥熟料矿物的形成机理,用粉煤灰代替粘土作原料,对熟料矿物进行优化组合,成功地研制出了一种高硅酸三钙的早期强度高的水泥熟料,这种熟料可掺入30%一40%粉煤灰,生产出425R型粉煤灰水泥。  相似文献   

17.
以偏高岭土和大掺量垃圾焚烧飞灰为原料,在碱激发作用下制备地质聚合物材料。在抗压强度和重金属浸出毒性测定的基础上,研究了不同原料配比对地聚物性能的影响。实验结果表明:合成的地聚物材料有较高强度,可以达到17 MPa以上,对重金属有明显固化效果,Pb水浸、无机酸浸、有机酸浸出浓度分别为0.25,0.16,0.22 mg/L;Cd水浸、无机酸浸、有机酸浸出浓度分别为0,0,0.15 mg/L,Pb、Cd和其他重金属均达到进入生活垃圾填埋场标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号