首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
选取北京和石家庄两个监测点,于2014年冬季进行了PM_(2.5)样品采集,分析研究了PM_(2.5)及水溶性离子组分污染特征,并应用WRF-CAMx模型对采样时段进行了模拟,分析了观测期间PM_(2.5)和二次离子组分区域传输贡献情况.结果表明,采样期间北京PM_(2.5)质量浓度为(116.6±87.0)μg/m~3.水溶性离子质量浓度为(45.3±40.6)μg/m~3.其中SO_4~(2-)、NO_3~-和NH4+质量浓度分别为(13.3±13.6)μg/m~3、(14.8±15.1)μg/m~3和(9.1±7.2)μg/m~3;石家庄污染水平高于北京,PM_(2.5)浓度为(267.7±166.7)μg/m~3.总水溶性离子、SO_4~(2-)、NO_3~-和NH4+质量浓度分别(111.8±104.3)μg/m~3、(36.6±36.5)μg/m~3、(28.5±29.3)μg/m~3和(25.5±29.8)μg/m~3.两处采样点SOR与NOR分别为0.12、0.10(北京)和0.11、0.14(石家庄),冬季大气氧化性相对较弱,非均相氧化是主要二次转化原理.数值模拟结果显示,北京、石家庄城区1月PM_(2.5)受区域传输贡献分别为28.1%和28.3%,高浓度时段外来源贡献有所上升.二次离子中两地NO_3~-传输作用均强于SO_4~(2-).  相似文献   

2.
文章在北京城市森林植被区选择2个观测点,采集2个观测点的PM_(2.5)质量浓度数据,并结合北京植物园的气象数据,研究其PM_(2.5)质量浓度变化特征和影响因素,探讨PM_(2.5)质量浓度变化对城市生活的影响。结果表明:被选观测点的PM_(2.5)浓度月变化基本呈"M"型,PM_(2.5)浓度在6月最低(西山公园为(71.01±34.34)μg/m~3,北京植物园为(44.41±31.57)μg/m~3),2月最高(西山公园为(154.07±95.70)μg/m~3,北京植物园为(139.49±100.74)μg/m~3),10月达下半年的最高值(西山公园为(133.45±109.06)μg/m~3,北京植物园为(127.04±109.34)μg/m~3);PM_(2.5)浓度全年均值为西山公园((104.02±26.45)μg/m~3)>北京植物园((82.52±28.18)μg/m~3);PM_(2.5)浓度季节变化呈"V"型在冬季最高,春季次之,夏季最低PM_(2.5)质量浓度季节变化西山公园为冬季((115.46±41.37)μg/m~3)>春季((112.39±18.50)μg/m~3)>秋季((106.37±24.25)μg/m~3)>夏季((81.87±12.60)μg/m~3),北京植物园为冬季((97.35±41.38)μg/m~3)>春季((94.07±12.21)μg/m~3)>秋季((93.17±31.42)μg/m~3)>夏季((61.86±16.70)μg/m~3);森林空旷地的空气质量优于森林内部PM_(2.5)浓度变化主要受地理位置、气象因素、人文因素的影响。  相似文献   

3.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

4.
成都冬季PM2.5化学组分污染特征及来源解析   总被引:1,自引:0,他引:1  
2017年1月1~20日在成都地区分昼夜对PM_(2.5)进行连续膜样品采集,并在实验室测定了其主要化学组分(水溶性离子和碳质组分)的质量浓度.观测期间,PM_(2.5)的平均质量浓度为(127.1±59.9)μg·m~(-3);总水溶性离子的质量浓度为(56.5±25.7)μg·m~(-3),其中SO2-4、NO-3和NH+4是最主要的离子,质量浓度分别为(13.6±5.5)、(21.4±12.0)和(13.3±5.7)μg·m~(-3),一共占到了水溶性离子的85.6%;有机碳(OC)和元素碳(EC)的平均质量浓度分别为34.0μg·m~(-3)和6.1μg·m~(-3),分别占PM_(2.5)质量浓度的26.8%和4.8%.昼夜污染对比显示,PM_(2.5)白天和夜晚质量浓度分别为(120.4±56.4)μg·m~(-3)和(133.8±64.0)μg·m~(-3),夜间污染更为严重.SO2-4、NO-3和NH+4白天浓度高于夜间,这与白天光照促进了二次离子的形成有关;而Cl-、K+、OC和EC浓度夜间明显升高,可能是受夜间煤和生物质燃烧排放增加的影响.通过对近年来成都冬季PM_(2.5)化学组分的研究进行文献总结和比较后发现,SO2-4浓度显著降低,从2010年的50.6μg·m~(-3)降低到2017年的13.6μg·m~(-3);而NO-3浓度变化不大,维持在20μg·m~(-3)左右.PM_(2.5)中离子酸碱平衡分析表明,成都冬季PM_(2.5)由于NH+4的相对过剩而呈现出碱性,与以往呈偏酸性结果存在差异.对成都冬季NO-3/SO2-4的比值进行计算,NO-3/SO2-4平均值为1.57,表明移动源对PM_(2.5)污染影响更大.OC与EC的相关性表明,白天和夜间OC与EC的相关系数分别为0.82和0.90(P0.01),OC与EC来源具有一致性.SOC估算结果显示,白天和夜间SOC浓度分别为8.5μg·m~(-3)和11.9μg·m~(-3),占到OC的28.1%和31.8%.K+/EC平均值为0.31,并且K+与OC之间相关系数为0.87(P0.01),说明生物质燃烧对成都冬季碳质气溶胶有一定影响.主成分分析表明,成都冬季PM_(2.5)主要来源于燃烧源(燃煤、生物质燃烧等)、二次无机污染源以及土壤和扬尘源,其贡献率分别为32.8%、34.5%和21.5%.  相似文献   

5.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

6.
基于江苏省2013年12月-2014年11月期间71个监测点PM_(2.5)日数据以及2014年土地利用数据,以年、季为时间尺度,利用泰森多边形划分研究区域,在系统分析PM_(2.5)时空分异规律基础上,揭示PM_(2.5)浓度变化及其与土地利用的关系。结果表明:(1)PM_(2.5)浓度分布存在明显的时空变化趋势。时间上,冬季浓度最高,达109.72μg/m~3,春季次之,为70.13μg/m~3,秋季最低,仅53.20μg/m~3;空间上,从各监测点一年PM_(2.5)浓度看,南京、泰州和宿迁数个监测点是PM_(2.5)高浓度区域,浓度范围81~85μg/m~3。盐城开发区管委会浓度最低,仅49.75μg/m~3,全省呈现"内陆高,沿海低;内陆南高北低"的趋势。(2)土地利用类型及景观格局对PM_(2.5)浓度分布有一定影响。耕地、草地、水域和未利用地与PM_(2.5)呈负相关,林地和建设用地则呈正相关。景观面积、密度、破碎度和聚散性是影响PM_(2.5)的主要因素,冬夏季较为敏感。  相似文献   

7.
PM_(2.5)作为大气污染的一种,正受到社会越来越广泛的关注和研究,但大部分研究仅单独分析各样点PM_(2.5)浓度时间维度或空间维度特征,忽略了PM_(2.5)的时空维度变化。为综合考虑PM_(2.5)时空维度特征,该文以山东省2014年PM_(2.5)浓度监测数据为对象,建立PM_(2.5)时空变异模型,利用时空克里格法对山东省全年PM_(2.5)浓度进行时空预测,得到时空分布立方体数据,最后基于该数据,对山东省PM_(2.5)污染特征作出分析。结果表明,2014年山东省整体PM_(2.5)污染严重。在空间上,中西部地区PM_(2.5)浓度超过75μg/m~3的天数超过290 d,存在持续性高危污染,东部小于37.5μg/m~3的天数超过146 d,存在间歇性轻微污染,且从西至东,PM_(2.5)污染天数和程度逐渐降低,具有明显地域性污染特征;在时间上,PM_(2.5)浓度最高时间段为1、2、11和12月,最低为6-8月,各季节污染程度依次为:冬季秋季春季夏季。研究表明时空地统计方法能够有效地对空气质量进行时空预测,是挖掘更多的时空分布特征和信息,进行环境数据分析的有效手段。  相似文献   

8.
为探究自贡市冬季大气PM_(2.5)污染特征,文章分析了自贡市冬季大气PM_(2.5)中水溶性离子、无机元素和碳质组分的浓度水平及来源。结果表明,二次无机离子(NO_3~-、SO_4~(2-)、NH_4~+)是自贡冬季PM_(2.5)中水溶性离子的重要组成部分,占PM_(2.5)质量浓度的45.8%。SOR和NOR值分别为0.45和0.31,说明自贡市二次离子污染较为严重;PM_(2.5)中无机元素总浓度为2.7μg/m~3,占PM_(2.5)质量浓度的3.9%。通过富集因子法分析,Pd、Te、Ag、Cd、Sb、Se、Mo、Sn、Hg、Br、Cs、Tl为高度富集;As、Co、Sc、Ga、Pb、Cr、Zn、Cu、Ni为中度富集;Al、K、Mn、V、Ba为轻度富集;TC质量浓度为19.3μg/m~3,其中OC为11.7μg/m~3、EC为7.5μg/m~3,分别占PM_(2.5)质量浓度的15.3%、9.8%。PM_(2.5)中SOC平均浓度为1.6μg/m~3,占OC的13.7%;自贡市冬季PM_(2.5)来源贡献大小依次为二次硝酸盐(24.5%)、移动源(20.9%)、二次硫酸盐(18.1%)、工业源(17.2%)、生物质燃烧源(10.1%)、扬尘源(9.2%),应重点管控移动源、水泥行业、道路扬尘和施工扬尘、生物质燃烧等排放源。  相似文献   

9.
文章针对2019年12月长沙市冬季气象数据和大气污染物质量浓度在线监测数据,分析大气污染特征及气象因素,通过HYSPLIT后向轨迹模型和NCEP的GDAS气象数据对12月及污染过程的3个阶段逐时72 h气流后向轨迹进行聚类,利用潜在源贡献因子(PSCF)和浓度权重轨迹(CWT)揭示长沙市冬季PM_(2.5)的潜在源区及其贡献特征。结果表明:12月长沙市PM_(2.5)平均浓度分别为77.12μg/m~3,其中阶段Ⅱ(185.9μg/m~3)阶段Ⅰ(80.9μg/m~3)阶段Ⅲ(59.1μg/m~3),相关性分析和特征雷达图表明,污染过程以一次颗粒物的排放为主;风速上升过程长沙市PM_(2.5)污染方位由西南方向南方转移,不利气象条件促进了污染过程PM_(2.5)的积累和爆发;聚类分析显示长沙市12月来自湘鄂交界处的轨迹3最频繁,来自福建和广东的轨迹4携带PM_(2.5)浓度最高。阶段Ⅰ偏燃煤型污染显著,受安徽、江西和湖南3个省份的气流轨迹影响;阶段Ⅱ偏二次型污染受福建和广东气流轨迹影响;阶段Ⅲ转变为偏综合型和其他类型污染,与北方气流占比相对阶段Ⅱ上升有关,主要受来自江西和福建交界处的轨迹1影响浓度和占比均为最大;WPSCF和WCWT结果显示,长沙市PM_(2.5)浓度的主要源区位于湖南西南、北部及广东、湖北等地。  相似文献   

10.
基于2000年、2003年、2006年、2009年、2014年的遥感影像提取不透水表面数据以及相应年份的PM_(2.5)质量浓度估算值.以不透水表面覆盖率(ISC)为城市化指标来分析城市化对PM_(2.5)质量浓度的影响,分别从城市、县区尺度探讨城市扩张对PM_(2.5)污染时空分布及演变的影响机制,定量研究二者相互关系;以京津冀地区为例,其ISC从2000年的0.7%增长到2014年的1.5%,而PM_(2.5)浓度从45.7μg/m~3飙升到77.3μg/m~3.根据2000与2014年的PM_(2.5)浓度差值,把京津冀地区划分为轻度(0~9.9μg/m~3)、中度(10~29.9μg/m~3)、重度(30~49.9μg/m~3)、严重(50~77μg/m~3)污染区域,相应的不透水表面增长率分别为43.3%、110.5%、165.5%和208.3%.严重污染区域位于北京-廊坊-天津-唐山(沿高速公路G1)和北京-保定-石家庄-邢台-邯郸(沿高速公路G4),伴随着较高的不透水面增长率(208.3%).同时,在2000~2014年期间,京津冀地区ISC空间分布与PM_(2.5)污染空间分布高度一致,以太行山和燕山山脉为界的东南地区的不透水表面增长率为160.0%,显著高于西北地区的增长率50%,同时东南地区的PM_(2.5)浓度增长值45.5μg/m~3也显著高于西北地区的17.0μg/m~3.此外,把京津冀地区174个乡镇按照其ISC划分为5个级别:松散型(0~4.9%)、轻度紧凑型(5%~9.9%)、紧凑型(10%~14.9%)、密集型(15%~24.9%)、高度密集型(25%),乡镇数量分别为42、35、52、34、11,对应的PM_(2.5)浓度均值分别为(42.7±10.5)、(79.9±11.9)、(95.6±15.4)、(99.1±10.8)、(115.3±9.2)μg/m~3.其中松散型乡镇的空气质量较好,而严重雾霾笼罩在高度密集型的乡镇中.结果表明当乡镇ISC为5%和25%时,对区域PM_(2.5)质量浓度带来剧烈的增长.当ISC5%时,PM_(2.5)浓度发生了激烈增长,其比5%的乡镇高了87.2%.当ISC25%时,其PM_(2.5)浓度飙升到(115.3±9.2)μg/m~3,大约是5%乡镇的3倍.结论表明,在城市化进程中,不透水表面扩张对PM_(2.5)污染的加剧带来严重影响,不透水表面扩张应该成为城市空气污染一个不可忽视的影响因素之一.  相似文献   

11.
方婧  余博阳 《环境科学》2013,34(10):4050-4057
采用实验室柱淋溶方法,考察了纳米CeO2、纳米TiO2和纳米Al2O3材料在不同土壤中的运移行为,分析了纳米材料在土壤中运移能力与土壤性质的相关性,并采用胶体运移动力学模型估算了纳米材料在土壤中的最远运移距离.结果表明,纳米CeO2和纳米TiO2在试验的大部分土壤中有很强的运移能力,而纳米Al2O3仅在试验的酸性土壤中有较强的运移能力,在其他土壤中几乎被全部截留.纳米材料在土壤中运移的机制非常复杂,静电作用、土壤表面电荷异质性、团聚作用、张力作用(straining)以及过滤熟化作用(ripening)均对纳米材料的运移有着重要的影响.纳米CeO2的运移能力与土壤Zeta电位显著负相关;纳米TiO2的运移能力与土壤黏粒含量显著负相关,与土柱渗透系数显著正相关;纳米Al2O3的运移能力与土壤pH显著负相关,与土柱渗透系数显著正相关.模型估算的纳米CeO2、纳米TiO2和纳米Al2O3在试验土壤中的最远运移距离分别为52~69 043、31~332和<10~5 722 cm.纳米材料在一些土壤中的最远运移距离远远大于30 cm表层土壤的深度,意味着纳米材料在这些土壤中有向深层土壤运移的可能.  相似文献   

12.
紫外光照下盐酸环丙沙星的光解性能   总被引:1,自引:0,他引:1  
本研究重点考察了盐酸环丙沙星初始浓度、硝酸铅、硝酸镉、氯化铅、氯化镉等重金属盐对盐酸环丙沙星光降解性能影响.结果表明,黑暗条件下环丙沙星无降解;紫外光照可以有效去除环丙沙星,且环丙沙星的光降解速率随其初始浓度的增大而降低;硝酸铅和硝酸镉(除0.006 mmol·L~(-1)体系外)可以促进环丙沙星的光降解,且随摩尔比的增大(即硝酸盐浓度的降低),环丙沙星的半衰期逐渐增大;随着摩尔比的增大(即氯化盐浓度的降低),氯化铅和氯化镉先促进后抑制环丙沙星的光降解.  相似文献   

13.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别.  相似文献   

14.
邯郸市大气复合污染特征的监测研究   总被引:8,自引:2,他引:6  
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.  相似文献   

15.
沧州市大气污染特征观测研究   总被引:1,自引:1,他引:1  
王永宏  胡波  王跃思  刘伟  张武 《环境科学》2012,33(11):3705-3711
利用沧州2009年7月~2011年7月的NOx(NOx=NO+NO2)、O3、SO2以及PM10的观测数据,分析了沧州市大气污染物的日变化、月平均变化、年变化以及季节平均变化特征.结果表明,NOx、PM10日变化为双峰型,O3为单峰.SO2日变化也呈现为双峰型,但是其变化幅度较平缓.NO、NO2、NOx、SO2有较相同的季节变化趋势.NO、NO2、NOx、SO2及PM10冬季值最大,分别为(30.0±18.9)μg·m-3、(50.5±19.8)μg·m-3、(80.5±38.7)μg·m-3、(62.1±34.7)μg·m-3、(201.6±98.5)μg·m-3.臭氧夏季浓度最高,其月均值为(88.0±22.3)μg·m-3.NO、NO2、NOx、O3、SO2及PM10年均值分别为(18.9±14.5)μg·m-3、(37.6±13.0)μg·m-3、(56.5±27.5)μg·m-3、(49.9±16.3)μg·m-3、(31.6±19.5)μg·m-3、(156.7±79.1)μg·m-3.秋冬季污染物主要为NOx(NOx=NO+NO2)、SO2以及PM10,夏季污染物主要为O3.  相似文献   

16.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

17.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

18.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   

19.
成都市冬季大气颗粒物组成特征及来源变化趋势   总被引:7,自引:0,他引:7  
2010—2012年冬季分别在成都市8个环境受体采样点采集PM10、PM2.5样品,同时采集颗粒物源类样品,分析上述样品质量浓度及多种无机元素、水溶性离子和碳组分的含量,以对这3 a冬季大气颗粒物浓度、特征组分、来源及变化趋势进行分析.使用CMB-iteration模型对成都市中心城区的PM10、PM2.5进行来源解析.结果表明:成都市冬季ρ(PM10)在工业区最高,PM2.5污染呈现区域性特征;冬季PM10的主要来源有扬尘、二次硫酸盐、煤烟尘、二次硝酸盐和机动车尾气尘,上述5类源在2010─2012年的分担率分别为24%~29%、17%~22%、13%~16%、6%~12%、6%~11%;对PM2.5有重要贡献的源类有二次硫酸盐、扬尘、煤烟尘、二次硝酸盐和机动车尾气尘,这5类源在2010─2012年的分担率范围分别为25%~27%、19%~22%、12%~15%、11%~13%、8%~11%.二次粒子、扬尘等是成都市大气颗粒物的主要污染源,其中扬尘、建筑水泥尘等以粗粒子为主的源类浓度贡献呈逐年下降趋势,而二次粒子等以细粒子为主的源类浓度贡献则逐年上升,成都市冬季大气细颗粒物污染加重.  相似文献   

20.
邯郸市大气颗粒物污染特征的监测研究   总被引:6,自引:1,他引:5  
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号