首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
杭州市区机动车污染物排放特征及分担率   总被引:1,自引:0,他引:1       下载免费PDF全文
选取杭州市区绕城高速、快速路、主干道和民用支路4种典型道路进行工况测试,建立了2010年机动车CO、HC、NOx和PM10排放清单,获得了分车型、燃料类型、排放标准以及道路类型的机动车污染物排放分担率.结果表明,杭州市机动车的污染物排放分担率差别显著,乘用车、出租车和公交车是CO和HC排放的主要来源,重型货车和公交车是NOx和PM10排放的主要来源,且乘用车的NOx排放分担率也较大;柴油车的NOx和PM10的排放分担率远大于其保有量的贡献率,是其排放的主要来源,汽油车是CO和HC排放的主要来源;占保有量30%的国0和国I车辆,对CO、HC、NOx和PM10排放分担率分别为67%、69%、58%和82%;主干道是机动车CO、HC和NOx排放的主要来源,其排放分担率分别为66%、65%和64%,民用支路是PM10排放的主要来源,分担率为55%.  相似文献   

2.
乌鲁木齐市机动车排放清单研究   总被引:6,自引:3,他引:3  
近年来随着乌鲁木齐市机动车数量的快速增加,致使机动车排放污染突出. 通过调查乌鲁木齐市2007年机动车的保有情况及技术水平分布,研究了各类型机动车的排放因子以及年均行驶里程,并测算了该市2007年机动车污染物排放总量、分区排放量及各类型机动车的分担率. 结果表明:2007年在乌鲁木齐市注册的各类型机动车排放的CO总量为11.09×104 t,HC总量为1.53×104 t,NOx总量为2.73×104 t,PM总量为0.38×104 t;其中CO和HC排放主要集中在城区,NOx和PM排放主要集中在外埠;在城区的机动车排放中,CO和HC排放以轻型载客汽车为主,NOx排放以中重型公交车为主,PM排放以中、重型载货汽车为主.   相似文献   

3.
杭州市机动车污染物排放清单的建立   总被引:8,自引:0,他引:8       下载免费PDF全文
基于调研的基础数据,运用修正后的IVE排放模型及GIS系统建立了杭州市2010年1km×1km的高时空分辨率的机动车排放清单.结果表明,2010年杭州市机动车污染物CO、HC、NOx、PM的年排放量分别为44.06,2.31,4.43,0.65万t,主要来自线源道路的排放.各车型污染物分担率各不相同,汽油乘用车和公交车排放CO和HC最大,柴油重型货车和公交车是NOx和PM排放的主要来源,两种燃油下的机动车排放差异十分明显.机动车污染排放与路网密集程度及道路长度密切相关,因此西湖区和江干区排放总量远远高出其他区域.机动车各污染物排放强度空间分布均呈现由城市中心向城市边缘的递减趋势,各污染物中心城区排放量占总排量的70%以上.机动车污染物排放日变化十分明显,与人群出行规律有极大的相关性.  相似文献   

4.
机动车排放污染物已经成为大气污染的重要来源.基于福建省高速公路交通流量数据,采用自下而上的计算方法建立了2020年1—7月福建省高速公路机动车高分辨率污染物排放清单.结果表明,受疫情影响,福建省高速公路月均车流量和污染物排放量呈先下降后上升的变化趋势,4月污染物排放量达到最低,5月污染物排放量又迅速恢复到疫情前的排放水平,其中,疫情中期污染物CO、HC、NOx、PM2.5和PM10排放较疫情后期分别减少了90.68%、89.06%、92.58%、89.58%和89.63%.在整个研究期内,不同城市高速公路机动车污染物排放的分担率有所不同,泉州、福州和漳州的高速公路机动车排放分担率较高;从车型来看,小型客车和轻型货车是CO和HC的主要贡献车型,NOx和PM主要来自重型货车和轻型货车;从燃料类型来看,汽油车是CO和HC的主要贡献源,柴油车则对NOx和PM贡献突出;从排放标准来看,国三和国四车对各项污染物的贡献率最大.各项污染物空间分布一致,排放高值区位于东部沿海地区路段,西部内陆的...  相似文献   

5.
基于《道路机动车大气污染物排放清单编制技术指南》建立了红河州2019年机动车排放清单。结果表明:2019年红河州CO、HC、NOx、PM2. 5、PM10和SO2排放总量分别为29494、11908、13259、273、301和138t/a。机动车污染物分担率差别显著,小型汽油载客车、轻型汽油载货车和摩托车是CO的主要排放来源,小型汽油载客车和摩托车对HC排放贡献最大,对NOx、PM2. 5和PM10贡献最大的是大型柴油载货车。汽油车是CO和HC机动车污染物排放的主要贡献源,其排放量分别占排放总量的82. 01%和96. 64%,柴油车是NOx、PM2. 5和PM10的主要贡献源。  相似文献   

6.
中国国道和省道机动车尾气排放特征   总被引:7,自引:7,他引:0  
王人洁  王堃  张帆  高佳佳  李悦  岳涛 《环境科学》2017,38(9):3553-3560
近年来,随着我国机动车保有量的持续增长,机动车排放已成为我国重要的大气污染物来源之一.现有的机动车排放研究多关注城市内的机动车大气污染物排放,针对城市间的大气污染物排放研究较少.我国城市间交通道路主要包括国道和省道,截止至2015年我国国道里程18.53万km、省道里程32.97万km,约占全国等级公路总里程的13%,因此开展我国国道和省道机动车大气污染物排放研究十分重要.本研究基于全国国道和省道交通监测站的年均监测数据,采用环境保护部发布的《道路机动车大气污染物排放清单编制技术指南(试行)》中的指导方法,计算了2015年我国国道和省道机动车的大气污染物排放清单,分析了污染物排放的时空分布特征.结果表明,我国国道和省道公路机动车排放的一氧化碳(CO)、氮氧化物(NO_x)、颗粒物(PM)和碳氢化合物(HC)排放量分别占全国机动车污染物总排放量的4.5%、27.9%、14.4%和7.7%;不同车型对国道和省道机动车大气污染物排放的分担率不同,其中大货车是NO_x、PM_(10)、PM_(2.5)的主要来源,摩托车是CO和HC的主要来源;不同道路类型中各车型的大气污染物排放分担率也不同,如高速路上大货车是NO_x、PM_(10)和PM_(2.5)的主要来源,普通道路上大客车和大货车是NO_x、PM_(10)和PM_(2.5)的主要来源.  相似文献   

7.
建立了泉州市"十二五"期间机动车排放清单,获得了不同机动车排放贡献率.结果表明:摩托车和小型客车占总机动车保有量的比例最大,成为泉州市机动车排放的主要来源;污染物排放量排序:CO>NOx>HC>PM;甲醛>苯>乙醛>1,3-丁二烯>氨;CO2>N2O>CH2;不同车型对机动车污染物的排放贡献率有显著不同,小型客车对于CO和HC排放贡献最大,NOx、PM的主要排放源为重型货车;摩托车、小型客车、中型货车对有毒有害物的贡献率最大;小型客车对温室气体的贡献率最大.  相似文献   

8.
根据车辆类型及排放因子计算西安市机动车尾气污染物排放CO、碳氢化合物(HC)、氮氧化物(NOx)及颗粒物(PM)的特征。结果显示,机动车排放污染物中一氧化碳含量远大于其他三者。CO和HC主要来自客车,尤其是小型客车,而颗粒物主要由重型货车排放;超过80%的CO和HC来自汽油车,而超过90%的PM排放来自柴油车;国Ⅰ前汽车在西安市汽车保有量中仅占3.48%,而四种污染物排放量在的比例分别为33.55%、29.68%、11.92%和21.43%。为减少机动车尾气污染物的排放,建议淘汰国Ⅰ前车辆,对柴油车尾气加强处理。  相似文献   

9.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

10.
北京机动车尾气排放特征研究   总被引:7,自引:0,他引:7  
近年来随着机动车保有量的快速增加,北京市机动车排放污染受到越来越多的关注。本研究应用COPERTⅣ模型计算了北京不同类型机动车排放因子,根据保有量和年均行驶里程等基础数据计算了2009年机动车尾气污染物排放量;调查了北京典型道路车流量和车辆运行速度等参数,计算机动车尾气排放强度,得出了典型道路不同污染物的综合排放因子;应用COPERTⅣ模型分析了车速对不同污染物排放的影响,将基于G IS的机动车活动强度、行驶速度和排放因子结合在一起,得到了北京机动车尾气排放网格分布清单。结果表明:CO排放量为71.58×104t,HC排放量为7.95×104t,NOx排放量为8.77×104t,PM排放量为0.38×104t。北京城区高峰小时CO排放量为143.9 t/h,HC排放量为18.6 t/h,NOx排放量为12.5/h,PM10排放量为1.14 t/h。  相似文献   

11.
IVE机动车排放模型应用研究   总被引:31,自引:6,他引:25  
对IVE模型进行了系统分析和介绍,以北京市为研究对象给出了模型的主要输入参数的确定方法和思路,运用IVE模型对北京市不同车型车队的排放进行计算。结果显示:公交车和卡车的排放因子明显较高,特别是颗粒物排放因子,分别为普通轻型车的14和44倍。北京市机动车的CO、VOC、NOx和PM的平均日排放总量分别为2767.4、182.5、353.8和7.1t。对于CO和VOC,普通轻型车的分担率分别为42.0%和34.7%;对于NOx和PM而言,卡车的贡献率最高,分别达到66.3%和83.0%。此外,比较了IVE模型与MOBILE6模型的方法和计算结果,讨论了IVE模型在我国的主要应用优势。  相似文献   

12.
辽宁省港口邻近区域海运废气排放测算   总被引:2,自引:1,他引:1       下载免费PDF全文
为准确测算沿海地区船舶废气排放量,基于试验数据确定了NOx、CO、HC和CO2排放因子;结合文献资料和海事局进出港船舶签证数据,采用基于船舶活动过程的方法测算了2014年辽宁省港口邻近区域〔距港口减速区外边界25 n mile(1 n mile=1 852 m)以外的边界线与港口陆地岸线所围成的区域〕海运废气排放清单. 结果表明:2014年辽宁省港口邻近区域海运NOx、CO、HC、CO2、SO2和PM(颗粒物)的排放量分别为11 827.1、971.4、399.6、1 097 426.5、11 654.1和959.2 t;散货船、集装箱船和油船3种主要类型船舶的NOx、CO、HC、CO2、SO2和PM的分担率之和分别为74.7%、77.8%、70.8%、68.0%、70.9%和70.6%;主机NOx、CO、HC、CO2、SO2和PM的分担率最大,分别为63.7%、63.0%、46.0%、40.4%、46.4%和45.3%;停泊工况下的NOx、CO、HC、CO2、SO2和PM排放量分别为3 318.3、281.7、168.3、520 194.9、4 894.0和411.5 t. 船舶降速运行、减少停港时间、燃用低硫油和向船舶供应岸电等措施能降低港口邻近区域海运废气排放. 基础数据缺乏或数据代表性不足给废气排放清单带来了一定的不确定性.   相似文献   

13.
王凯  樊守彬  亓浩雲 《环境科学》2020,41(6):2602-2608
利用车载排放测试技术对典型的联合收割机、拖拉机、农用运输车和农田建设机械实际工况下的尾气进行测试,建立了实际工况下农业机械的排放因子和2017年北京市农用机械排放清单.结果表明,不同的工作状态对农业机械尾气排放有较大的影响,怠速和行走时CO、NO_x、HC和PM排放趋于平稳;而切地和翻地模式下的波动较为明显.根据各类机械的分类和排放标准对排放因子进行细化,建立了较为完整的实际工况下的排放因子.根据农业机械排放因子和燃油消耗量计算出2017年北京市CO、NO_x、HC和PM的排放量分别是2 566.60、 1 239.29、 563.08和538.32 t.拖拉机、运输机械和联合收割机的污染物总量占CO、NO_x、HC和PM这4种污染物总量的98%、 95%、 95%和98%.因此,农用拖拉机、运输机械和联合收割机在农业机械污染减排中应作为重点控制对象.  相似文献   

14.
乌鲁木齐市区机动车污染物排放特征研究   总被引:1,自引:0,他引:1  
何丽  朱建雯  钱翌 《环境工程》2015,33(5):90-94
选择乌鲁木齐市125条道路调研测试得来的数据分析了乌鲁木齐市在用机动车的行驶分布的规律、污染物的排放特点和机动车道路的行驶特点。然后使用COPERT本地化模型计算CO、NMVOC、NOx和PM的排放因子,并计算了2012年CO、NMVOC、NOx和PM的排放量。通过估算得到2012年乌鲁木齐市机动车CO、NMVOC、NOx和PM的排放量分别为94 087,17 886,25 079,1 489 t。柴油机动车对NOx、PM的排放分担比率较大,而柴油机动车的保有量的贡献比率偏低;柴油汽车的CO、NMVOC的保有量的贡献比率跟它的排放分担率相比,贡献率要大;占保有量22.3%的国Ⅰ、国Ⅰ前标准的机动车辆对机动车CO、NMVOC、NOx、PM的排放分担比率分别为50.5%、41.0%、51.5%和55.0%;占保有量64.3%的国Ⅲ、和国Ⅳ车辆对CO、NMVOC、NOx和PM的贡献率分别为35.2%、42.7%、35.6%和33.9%。  相似文献   

15.
APEC会议期间北京机动车排放控制效果评估   总被引:10,自引:5,他引:5  
机动车尾气排放是影响北京市大气环境质量的首要因素,为了保障APEC期间的空气质量,北京市采取了包括控制机动车排放在内的严格的控制措施.本研究基于路网车流量、车速和车型变化数据,提出了一种基于自下而上排放清单的控制措施效果评估方法.结果表明,APEC会议期间北京市路网车流量下降,车速上升,小客车的车流量下降幅度最大;APEC会议期间机动车尾气CO、NO_x、HC和PM排放削减比例分别为:快速路15.1%、22.4%、18.4%和21.8%,主干道29.9%、36.4%、32.7%和35.8%,次干道35.7%、41.7%、38.4%和41.2%,支路40.8%、46.5%、43.1%和46.0%.基于自下而上的排放清单方法,建立了APEC会前和会期的机动车尾气排放清单,结果显示研究区域内会期机动车尾气排放量CO、NO_x、HC和PM排放量分别削减37.5%、43.4%、39.9%和42.9%.  相似文献   

16.
樊守彬  郭津津  李雪峰 《环境科学》2018,39(8):3571-3579
应用基于路网车流信息的情景分析方法,对北京城市副中心地区依据不同控制情景,以2015年为基准年建立机动车尾气排放清单.通过计算未来年路网车流信息和各情景下实际路网机动车污染物的排放清单,预测2020年和2025年的污染物排放变化.结果表明,未来10年北京城市副中心路网密度和机动车行驶里程持续增长,与基准情景相比,各控制情景对污染物排放量均有削减,新能源车推广情景对各污染物减排效果显著,且对NOx和PM的减排效果更好.外埠车限行情景对各污染物减排效果均较为显著,淘汰高排放车措施在短时间内削减效果显著,但长期削减效果较弱.综合情景对污染物的削减率达到最佳,机动车污染物CO、NOx、HC和PM排放量分别下降39.0%、58.7%、49.2%和55.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号