首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
兰州市大气重污染气象成因分析   总被引:18,自引:8,他引:10  
兰州市曾经是全国乃至全世界空气污染最严重的城市之一,重度空气污染特征明显.根据兰州市环境保护局公布的大气污染数据及气象局的气象观测数据,采用时间序列法和相关统计方法对兰州市2002—2011年空气污染指数(Air Pollution Index,API)大于200的大气重污染特征进行研究,并探析了其气象学成因.结果表明,静稳型重污染发生天数约占重污染发生总天数的77%,而沙尘型重污染只占23%.静稳型重污染是兰州市最主要的大气重污染类型,它往往存在PM10、SO2和NO2三种污染物同步累积的过程,持续时间长,主要发生在冬季;而沙尘型重污染持续时间短,由于外来高浓度沙尘输送的影响,PM10浓度会急剧升高,而SO2和NO2浓度则会明显下降(SO2、NO2浓度明显低于静稳型重污染),几乎都发生在春季.对它们的成因分析表明:静稳型重污染的气象学成因主要是风速小,稳定能量大,大气环境稳定度大,不利于湍流扩散,本地源污染物持续积累造成;沙尘型重污染气象学成因主要是春季气候干燥,相对湿度低,造成大风沙尘天气,给兰州市输送大量沙尘颗粒形成大气重污染.此研究结果可为兰州市大气重污染的防治提供科学依据.  相似文献   

2.
京津冀区域重污染天气过程数值预报评估新方法   总被引:11,自引:3,他引:8  
利用区域空气质量监测数据、空气质量模式数值预报产品及天气图资料,建立了一种适用于区域重污染天气过程预报的评估方法,将其用于评估NAQPMS模式系统对2013年和2014年京津冀地区静稳型、沙尘型和特殊型3类重污染天气过程的预报能力,并探讨了重污染天气过程早报、晚报及漏报的可能气象条件原因,以提高预报准确率.结果表明:数值模式系统提前3 d预报重污染天气过程的预报准确率可达57%,秋冬季预报效果好于其他季节,静稳型预报效果好于沙尘型和特殊型.对模式AQI预报结果统计发现,当预报AQI值达到150以上时,实际发生重污染天气过程的概率较大,如定义AQI等于150作为重污染天气预警临界值,模式预报准确率可提高至70%以上.天气系统对污染过程预报有重要影响,WRF气象模式对中低层天气系统位置及强度预报偏差是导致静稳型污染过程早报和晚报的一个重要原因.  相似文献   

3.
沙尘天气对北京大气重污染影响特征分析   总被引:19,自引:8,他引:11  
利用北京市具有代表性的大气污染物监测站资料,统计出2000─2005年各月重污染的天数,并对4和5级的重污染特征进行分析.结果表明,北京市大气重污染主要源于颗粒物. 分析了北京沙尘型重污染年、季节变化特征和表现形式等. 利用2000—2005年北京及周边地区环境监测、卫星遥感以及气象等数据,对沙尘天气影响北京城区大气中ρ(PM10)进行分析发现,ρ(沙尘粒子)约占ρ(PM10)的1%~13%;沙尘天气的影响区域逐渐加重的顺序为前门<古城<车公庄<农展馆<东四<天坛<奥体中心<定陵;沙尘天气下ρ(PM10)具有双峰型特征,细粒子(PM2.5)质量浓度的增加对人体健康影响极为不利.   相似文献   

4.
2013~2014年北京大气重污染特征研究   总被引:30,自引:0,他引:30  
从污染物浓度的时间变化、空间分布以及大气污染类型等方面,对2013~2014年北京大气重污染过程进行了分析,并初步探讨其影响因素.结果表明:2013~2014年北京共出现大气重污染105d,重污染频率为14.4%.其中,首要污染物为PM2.5的天数为103d,首要污染物为PM10和O3各有1d;冬半年重污染天数占全年的76.2%.重污染气象要素特征主要表现为风速小、湿度高、能见度低.重污染日PM2.5/PM10浓度比值为91.3%,明显高于全年平均水平,表明重污染时颗粒物以细颗粒物为主.北京大气重污染区域分布表现为南高北低,平原高、山区低的总体特征,交通站重污染天数普遍高于市区其它站点.北京大气重污染主要表现为积累型、光化学型、沙尘型以及复合型等类别;其中积累型大气重污染往往伴有区域污染水平的整体升高,PM2.5组分中NO3-、SO42-、NH4+等水溶性二次离子的浓度增幅最为明显;O3污染在近两年有加重的趋势.  相似文献   

5.
为揭示大气污染的演变规律,推动京津冀及周边地区空气质量的持续改善,针对大气重污染发生—演变—消散全过程的核心科学问题,在京津冀及其周边地区建立大气污染传输通道立体观测网,围绕2017年秋冬季和2018年春、秋、冬三季开展重污染时段和重污染过程的地基和车载走航观测,评估区域大气污染输送和城市间大气污染的相互传输量.结果表明:北京市污染呈明显的区域性特征,春季主要受区域不利扩散条件及沙尘传输影响,秋季主要受西南通道传输影响,冬季主要受西南、南部、东南通道混合层内传输与区域扩散条件不利的共同影响.秋冬季京津冀地区NO2、SO2污染物垂直柱浓度整体低于西南、东南和南部输送通道区域,当弱南风静稳天气条件主导时,北京市易受到污染物输送的影响,形成局域污染过程.研究显示,北京市重污染时段外来污染物各类尺度输送通道中,西南通道污染传输为主导,部分时段还受到东南和东部通道污染传输的影响.   相似文献   

6.
采用杭州市近7年的气象与环保监测资料,综合考虑2 m相对湿度、10 m水平风速、日均海平面气压、24 h变压、24 h变温、低层逆温等气象因子,通过历史样本统计划分阈值范围再权重求和的方法,构建了静稳天气指数(SWI).经过实况回算检验,分析所建指数与污染天气的对应关系,并应用到重污染天气成因分析、空气质量预报和污染减排评估等方面.结果表明:①SWI可以综合反映大气静稳程度,与PM2.5浓度有较好对应关系,SWI越大越容易出现污染天气,SWI大值最易出现在冬季,其次为秋季和春季,夏季主要污染物往往是臭氧,不易发生中度以上的污染天气.②SWI可用于判断杭州秋冬季重度及以上污染天气的成因,平均而言SWI<6.7时不易出现重度及以上污染;若SWI<6.7时仍出现重污染天气,可判断主导风向上游的外来污染物输入是引起重污染的主要原因,根据前期SWI的相对大小可判断有无叠加前期本地污染物积累;若SWI持续大于6.7且出现重度及以上污染天气,可判断由大气静稳而产生的本地污染物堆积是主要成因.③依据预报数据计算的SWI对空气质量分级预报有较好的参考价值,在短期和中期预报时效内均有表现力.④将SWI应用到G20会议期间污染减排效果评估中发现,在气象条件静稳程度相当时,减排措施有效降低了污染程度.  相似文献   

7.
基于风廓线雷达数据、大气污染数据及气象数据对2017年12月17日—2018年1月3日成都地区的一次持续性重污染天气过程进行研究,并对两次污染物浓度爆发式增长阶段的污染原因及污染物来源进行了分析.结果表明:①在这次重污染天气过程中,风廓线雷达高精度的风场资料(包括水平风速、风向、垂直风速、大气折射率结构常数C■)配合其他气象要素在分析两个污染阶段污染物的累积及扩散、输送中可以发挥重要的作用,即当成都地区水平风场风速较小且风向多变时,此时受静稳型天气控制,污染物浓度会快速累积增长,而当出现较强的东北风时,可能会有沙尘污染物的输入,应注意沙尘天气的提前预警.垂直风场中垂直速度和大气折射率结构常数C■的变化往往影响着污染物浓度的变化,由于风廓线雷达具有较高的时间分辨率,因此,对污染天气过程的变化有一定的指示意义.②结合局地环流指数和边界层通风量,重新定义了一种适合成都地区风场特征的通风指数:有效通风量(EVI),从而表明第一阶段污染的主要原因是成都地区由静稳型天气控制,边界层内风场对污染物的稀释扩散能力差,导致污染物累积.③通过后向轨迹模拟并结合PM_(2.5)浓度数据进行聚类分析,认为第二阶段污染主要是东北方向携带有大量沙尘污染物的气团输送到成都地区导致的,与源于西北地区沙尘天气的沙尘输送密切相关.  相似文献   

8.
传输指数在合肥市重污染过程中的应用分析   总被引:2,自引:0,他引:2  
利用潜在源区贡献法计算了合肥市2015年冬季传输指数,并基于传输指数和PM_(2.5)浓度将合肥市的重污染过程划分为3类,同时对各类重污染过程进行气象成因分析.结果表明:污染物传输型重污染过程的传输指数明显增大且PM_(2.5)浓度急剧增大;污染物积累型重污染过程的传输指数无明显增大且PM_(2.5)浓度逐渐增大;污染物暴发性排放型重污染过程的传输指数无明显增大但PM_(2.5)浓度急剧增大.污染物传输型重污染过程主要是高压南下迫使北方重污染气团输送引起的;污染物积累型重污染过程主要是静稳的天气形势导致污染物堆积造成的;污染物爆发性排放型重污染过程是由污染物暴发性排放而无法及时扩散引起的.  相似文献   

9.
北京低能见度污染天气发生频率与成因特征研究   总被引:1,自引:0,他引:1  
低能见度污染天气(LVPW)是气象条件与大气污染耦合形成的能见度<1000m且空气质量在3级以上的污染天气.本文利用谷耿搜索获取的资料作为样本观测值进行了统计,空气质量3级以上LVPW对污染日数的发生频率达4.7%,对样本总体的发生频率迭1.45%.与上世纪末相比,北京沙尘型污染天气相对活跃,但静稳型LVPW发生频率是沙尘型LVPW发生频率的3倍还多.北京LVPW的时空特征需进行深入研究.  相似文献   

10.
沙尘天气对我国北方城市大气环境质量的影响   总被引:13,自引:4,他引:9  
采用2001—2006年沙尘天气的统计数据以及城市空气污染指数(API),分析了沙尘天气对沙尘源区和影响区代表城市的空气质量影响,并分析了2005—2007年兰州和北京春季沙尘天气与非沙尘天气下气溶胶光学厚度与波长指数的变化特征.结果表明:近些年沙尘天气呈先减少后略微增加但总体呈缓慢下降的趋势;春季沙尘天气加重了城市大气污染,对沙尘源区内代表城市的影响超过了区域本底污染指数的50%,使兰州、银川、呼和浩特和包头的春季非沙尘天气API平均值分别增加了64%,53%,86%和90%;使影响区内代表城市,如北京、天津、太原、石家庄、沈阳、济南、西安和郑州的春季非沙尘天气API平均值分别增加了85%,62%,49%,57%,29%,41%,27%和45%;沙尘天气使城市大气气溶胶光学厚度升高,气溶胶波长指数降低.   相似文献   

11.
利用常规气象观测资料、空气质量监测资料、再分析资料和数值模式资料,分析了2014年2月20-26日京津冀地区持续重污染天气过程的环流背景、气象要素特征、静稳天气条件和传输条件.结果表明:2月20-26日,亚洲东部受弱高压脊控制,京津冀及周边地区位于地面高压后部,等压线较为稀疏,气压梯度小,造成地面风速较小;与此同时,混合层高度低,通风系数小和逆温存在,构成重污染天气出现和维持的气象条件,均不利于大气中污染物和水汽的垂直和水平扩散.静稳天气指数对于重污染天气有一定的指示意义,高静稳天气指数通常对应高PM2.5浓度,且二者变化趋势一致性高;2月20-26日静稳天气指数总体上大于2014年1-3月其他几次污染过程,且在高位长时间维持,造成此次污染过程更严重.此外,传输条件也是京津冀重污染天气的主要成因:地面高压西侧的偏南或偏东气流有助于污染物和水汽向京津冀地区输送和聚集,使能见度进一步降低、污染物浓度进一步升高.  相似文献   

12.
沙尘天气过程对北京空气质量的影响   总被引:6,自引:1,他引:5  
利用气象、沙尘暴特种观测以及环境监测等多种资料,对2010年3月19─22日沙尘天气过程的大气结构、沙尘源地和垂直水平输送条件以及北京近地层气象要素、空气质量的变化特征进行了分析. 结果表明:这次强沙尘暴天气过程是由冷空气短波槽快速东移南下、地面冷锋明显发展东移造成的;前期沙尘源地土壤湿度的减小为起沙提供了有利条件,同时低层存在的较强西北气流将从源地卷起的沙尘输送到下游地区;沙尘发生时,20 m气层内风速迅速增大,气层内垂直方向风速梯度也逐渐增大,相对湿度急剧降至20%~30%之间;受这次沙尘天气影响,北京地区ρ(TSP)以及10个区县的ρ(PM10)均迅速增加,空气质量达到重污染.   相似文献   

13.
为了弄清蒙古气旋外围出现的霾和沙尘复合污染特征及其形成的关键气象条件,本研究利用多种遥感设备(增强型云高仪、风廓线雷达和微波辐射计等)垂直加密观测数据,结合大气主要污染物(PM10、PM2.5、SO2、NO2)监测数据、加密自动气象站观测数据,以及常规地面和高空气象观测数据、NCEP再分析数据等,分析发生在北京春季的2次霾和沙尘重污染过程.结果表明,2017年5月4—5日为一次PM10和PM2.5混合污染过程,与上游地区强烈发展的蒙古气旋后部风沙区的输送有关.上游地区因受中-低空西来槽影响上升气流加强,使沙尘细颗粒物(粒径≤10 μm)悬浮于空中,由中-低空偏西风输送至下游地区,被北京及附近的弱下沉气流带至地面造成严重的PM10、PM2.5混合污染.其中,地面偏西风对上游地区的PM10、PM2.5的水平输送作用明显;2018年3月27—28日凌晨是受蒙古气旋底部低压区辐合作用和偏南气流输送作用形成的积累型霾(PM2.5)污染.28日凌晨2:00开始蒙古气旋后部沙尘区随东-西向冷高压南压而向南扩散.随后冷高压不断东移形成回流偏东风,偏东风使北京及西北部地区的低层大气产生辐合上升运动,导致本地尘土扬起,造成PM2.5重污染和PM10极严重污染;浮尘天气引发的大气污染具有突发性特征,且持续时间较长.边界层高度低、低层大气存在逆温层(或等温层)并长时间维持是霾和沙尘复合污染形成和持续的重要条件.霾和沙尘复合重污染的形成是人为污染物、沙尘细颗粒物水平和垂直输送,以及大气层结稳定共同作用的结果.  相似文献   

14.
北京地区沙尘天气及其影响   总被引:28,自引:0,他引:28       下载免费PDF全文
通过对北京地区1954~2001年气象台站的天气现象的观测资料以及最近几年20多个台站资料的分析.结果表明,北京一年中的沙尘暴主要集中在每年的春季(3~6月份),其中4月份的沙尘暴发生次数为全年最高,约占所有沙尘暴的50%;北京沙尘暴、扬沙和浮尘天气现象发生的频次有减少的趋势;北京地区沙尘天气的发生有一定的周期性变化规律;北京地区主要是以扬沙天气为主,占总沙尘天气的74.15%,其次是浮尘天气(18.09%)和沙尘暴(7.76%);北京地区的沙尘天气在空间分布上不均匀;北京地区沙尘天气现象与天气气候背景、周边和本地地表生态系统、本地建筑工地以及裸露地等有密切的关系;沙尘天气对北京重污染的贡献较大.  相似文献   

15.
利用常规气象观测资料、颗粒物监测数据,并结合污染源溯源,采用天气学原理和轨迹分析等方法对2019年5月青海东部一次沙尘重污染天气的主要成因及沙尘传输特征进行了分析.结果表明,此次沙尘重污染天气主要由贝加尔湖低槽东移携带的强冷空气沿河西走廊东移下滑,沿湟水河谷自东向西倒灌入青海东部导致,污染物随着强劲的东风影响青海东部.此外,西风环流将甘肃中部的沙尘传输至青海东部.此次沙尘天气过程地面冷空气在东移南压的过程中,沿河西走廊下滑的冷空气自青海东部河谷地区倒灌进入青海东部,甘肃境内沙尘进入青海后自东向西输送到青海东部,造成青海东部出现重污染天气.逆温层的存在使青海东部大气边界层趋于稳定,不利于污染物向外扩散,无法及时扩散的沙尘长时间维持是导致重污染天气的主要原因.沙尘天气出现前期,青海东部地区湿度条件逐渐变差,沙尘发生前,地面感热明显增加,大气中水汽减少、空气干燥是沙尘天气形成的重要条件.此次沙尘暴传输路径是自东南向西北传播,先后影响海东、西宁两地,与轨迹分析结果一致.  相似文献   

16.
北京春季大气气溶胶光学特性研究   总被引:4,自引:0,他引:4  
吕睿  于兴娜  沈丽  于超  朱俊  夏航 《中国环境科学》2016,36(6):1660-1668
为了解北京春季气溶胶光学特性,利用AERONET Level 2.0数据资料研究了2010~2014年北京市春季大气气溶胶光学参数,以晴空作为背景,比较分析了春季及沙尘期间大气气溶胶光学性质的差异.研究发现,北京春季与沙尘期间粗粒子消光占总消光的28%和59%,沙尘期间粒子吸收仅占消光的11.4%,说明沙尘天气发生时以粗粒子消光为主且吸收作用弱.沙尘天气溶胶光学厚度呈现出高值,其值为春季平均值的1.7倍.Angstrom波长指数在沙尘期间远小于非沙尘期间,且有85%小于0.6.北京春季体积尺度谱以粗模态峰为主,其中沙尘天粗模态的体积浓度为0.81μm3/μm2明显大于春季的值(0.25μm3/μm2).沙尘期间单次散射反照率随波长增加递增,在波长440~1020nm间的平均值大于春季均值.复折射指数实部在沙尘过程的平均值达到1.51(440nm),春季均值为1.48(440nm),表明沙尘气溶胶的散射能力更强;复折射指数虚部随波长增大呈减小趋势,且春季平均值大于沙尘期间的值.沙尘期间辐射强迫大于春季值,并远高于春季晴空条件下均值.  相似文献   

17.
2016年12月16~21日,京津冀地区经历了一次大范围重污染过程.本文基于空气质量监测资料及实况天气图分析了此次极端区域重污染事件的天气成因,并利用嵌套网格空气质量预报模式(NAQPMS)对京津冀主要城市PM2.5污染来源进行定量解析.结果表明:污染前中期500hPa高空为偏西气流伴空中回暖,后期转槽前偏南气流增温增湿明显;对应地面气压逐渐降低,辐合不断增强;垂直方向上,逆温层不断抬升加厚,中低层暖平流明显,风垂直切变小;大气长时间处于极度静稳状态也是造成此次重污染过程的天气因素.污染期间,京津冀各主要城市PM2.5污染本地贡献占40%~60%;北京市PM2.5本地贡献为48%,其中16~17日北京市主要受沿太行山东侧的西南向输送通道(邯郸-邢台-石家庄-保定-北京)影响,其后风速减小,北京本地及周边城市贡献增大.  相似文献   

18.
2002年北京PM10时间序列及其成因分析   总被引:4,自引:0,他引:4       下载免费PDF全文
以北京2002年的ρ(PM10)日平均值和气象要素观测资料为例,根据小波分析的原理,利用Matlab小波分析工具,对逐日ρ(PM10)时间序列进行分解和重构,分析了该地区ρ(PM10)的年变化规律和突变特征.结果表明:2002年北京PM10污染季节性变化强,春季最严重,冬季次之,夏、秋季节较好;全年共有4个突变点,均出现在沙尘暴或强沙尘暴期间,并指出沙尘天气是北京ρ(PM10)发生突变的主要影响因素.在此基础上,根据形成原因及气象资料分析,将2002年PM10重污染天气过程分为沙尘型和排放累积型2类,并阐述了形成各类PM10重污染天气的气象原因.   相似文献   

19.
北京地区大气气溶胶光学厚度的观测和分析   总被引:13,自引:2,他引:11       下载免费PDF全文
利用中国科学院大气物理研究所研制的中分辨率太阳-天光光谱自动观测系统(MORSAS)于北京对太阳直射光谱和天空散射光谱进行准连续观测,其中无云情况(包括晴天和浑浊天气)下的观测资料用于获取大气气溶胶光学厚度.该仪器与一台美国NASA主持的国际气溶胶观测网仪器CIMEL CE-318太阳光度计进行对比观测,二者所得结果一致性较好.作者给出了近3年北京地区大气气溶胶光学厚度和表征粒子谱宽度的Angstrom指数(a)的变化情况.与20世纪90年代中期相比,近3年北京秋冬季气溶胶光学厚度有所减小,表明北京的环境治理有一定成效;而春季气溶胶光学厚度则在近2年有明显增加,源自沙尘天气,且Angstrom指数亦变小,表明大粒子比例增加,因此需要加强对沙尘源的治理.  相似文献   

20.
王莹  智协飞  白永清  董甫  张玲 《环境科学》2022,43(8):3913-3922
作为一个新的区域性霾污染中心,长江中游地区地理位置特殊,是我国中东部地区大气污染物区域传输的重要枢纽,天气环流对该区域不同传输和累积型PM2.5重污染的形成机制还不甚了解.利用T-mode斜交旋转主成分分析法(PCT),对2015~2019年采暖季长江中游地区74 d PM2.5重污染事件进行天气环流分型,得到:PCT1高压底部传输型(天数:41 d,占比:55.4%)、PCT2低压辐合累积型(天数:12 d,占比:16.2%)、PCT3高压静稳累积型(天数:11 d,占比:14.9%)和PCT4高压后部传输型(天数:10 d,占比:13.5%)这4种主要的大气环流类型.区域传输型污染(PCT1和PCT4)占比高达69%,是长江中游地区PM2.5重污染发生的主导因素,突显了地域特殊性.其中,PCT1是最主要的环流型,冷锋南侵伴随强偏北风驱动上游地区污染物快速传输,使得PM2.5浓度暴发式增长.境内传输通道城市襄阳、荆门和荆州PM2.5传输过程具有12 h滞后特征,其PM2.5影响源区主要分布在上游的河南中北部、山东西部和华北大部分地区.PCT4传输型受低层偏东风输送影响,污染上升速率也相对较快.PCT2和PCT3为静稳天气环流型,地面风速较小,低层水平辐合和下沉运动有利本地PM2.5重污染累积,污染上升速率和持续时间都相对传输型更长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号