首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 296 毫秒

1.  长江口湿沉降汞的时间分布及潜在生态危害  被引次数:1
   张国玉  周立旻  郑祥民  黄文丹《城市环境与城市生态》,2010年第2期
   于2008年2月-2009年1月逐月采集长江口右岸陈行采样点的大气湿沉降样品,测试样品的总汞、溶解态汞浓度。分析结果显示,不同月份湿沉降中各形态汞的浓度变化较大,其中总汞浓度变化范围在0.09-0.45μg/L,体积加权平均值为0.22μg/L,总汞沉降通量高达199.79μg/(m2.a),远高于其它地区,该区域的大气已经受到一定程度的汞污染。总汞、颗粒态汞月沉降量与降水量呈明显的正相关关系(除6月份),总汞浓度与降水量在汛期(6-9月份)具有良好的负相关性,大气湿沉降汞的形态受到人为活动产生的颗粒物的影响,颗粒态汞占总汞比例变化范围在14%-89%之间,平均为62%。以地表水Ⅲ类标准0.1μg/L为评价标准,长江口湿沉降汞的潜在生态危害系数高,全年湿沉降汞平均值属于强生态危害范围。    

2.  重庆缙云山降水中不同形态汞的含量及其沉降量  被引次数:3
   覃蔡清  王永敏  彭玉龙  王定勇《环境科学》,2015年第36卷第3期
   于2013年4月至2014年3月连续1 a,利用湿沉降自动采样器采集了重庆缙云山的雨水样品,分析了样品中不同形态汞的含量,并计算其沉降量.结果表明,降水中总汞( THg)、溶解态汞( DHg)、颗粒态汞( PHg)、活性汞( RHg)、总甲基汞(MeHg)、溶解态甲基汞(DMeHg)、颗粒态甲基汞(PMeHg)的含量范围分别为7.47~120.11、2.51~43.03、2.28~77.99、0.14~15.14、2.58×10-2~101.62×10-2、0.30×10-2~72.29×10-2、1.45×10-2~63.55×10-2 ng·L-1.在计算各形态汞体积加权平均含量( VWM )的基础上,分别算出其年沉降通量为:42.71、23.51、19.20、5.87、0.61、0.34、0.27μg·( m2·a)-1. MeHg占THg的比例是0.07%~3.79%(平均1.34%),而PHg占THg的比例以及PMeHg占MeHg的比例分别是10.49%~89.30%(平均49.95%)、4.31%~98.86%(平均43.14%).除MeHg外,其它形态汞的含量和沉降量都表现出了明显的季节变化特征,THg、DHg、PHg的含量均为冬季最高而夏季最低,RHg的含量在春冬季明显高于秋夏季. THg、DHg、MeHg、DMeHg的沉降量与降雨量具有相同的季节变化趋势,均为春季﹥夏季﹥秋季﹥冬季,RHg的沉降量也是春季最大,而冬季最小.缙云山大气汞沉降不仅受到降雨量、降雨频率以及其它气象条件的影响,也受到了人为活动的干扰.    

3.  上海市降水过程中汞的浓度变化研究  
   黄文丹《环境科学与管理》,2015年第2期
   为了研究降水过程中汞浓度变化规律,采集了上海市区2009年7月6日一次连续降水过程中的分时段12个雨水样品,利用冷原子荧光测汞仪测定了总汞、溶解态汞和颗粒态汞浓度.分析结果显示,降水过程各时段雨水样品的总汞浓度变化范围为0.26~0.53 μg·L-1之间,其中溶解态汞占总汞的比例为67.9%~96.8%;总汞浓度和颗粒态汞浓度的总体变化规律较一致,降水事件的前30分钟内浓度较高,之后逐渐降低,最终趋于稳定;溶解态汞浓度从降水事件开始由高到低逐渐变化,最终也趋于稳定.通过清除比计算云下冲刷过程对雨水中总汞浓度的贡献,发现云下冲刷的贡献大于40.9%.    

4.  三峡库区长寿湖水体不同形态汞的空间分布特征  被引次数:2
   白薇扬  张成  赵铮  唐振亚  王定勇《环境科学》,2015年第36卷第8期
   以三峡库区长寿湖为调查对象,采用网格法均匀设点采样分析,并基于 ArcGIS 地统计模块,研究了长寿湖水体不同形态汞浓度及其空间分布特征.结果表明,长寿湖表层水总汞浓度变化范围为0.50~3.78 ng·L -1,平均值为1.51 ng·L -1;总甲基汞浓度变化范围为0.10~0.75 ng·L -1,平均值为0.23 ng·L -1.表层水体各形态汞的块金效应值分别为总汞50.65%、溶解态汞49.80%、颗粒态汞29.94%和活性汞26.95%,具有中等程度空间自相关性,表明在空间分布上一方面受水体内在属性的影响,另一方面也与渔业养殖、工业活动、农业耕种等人为外源输入干扰因素有关.表层水体溶解态甲基汞块金效应值3.49%,小于25%,表现很强的空间自相关性,其分布主要受到水体内在环境因素等的控制.各采样点水体总甲基汞占总汞的比例均较高,均达到淡水湖泊和河流中总甲基汞占总汞的质量分数上限值30%,暗示长寿湖水体内在环境条件利于汞的甲基化.    

5.  蠡湖水体氮、磷时空变化及差异性分析  被引次数:2
   王书航 王雯雯 姜 霞 张 博 胡佳晨 赵 丽《中国环境科学》,2014年第5期
   蠡湖是一个典型处于从浊水藻型向清水草型转换过渡时期的浅水湖泊.根据2012~2013年周年的现场调查资料和历史监测资料,分析了水体氮、磷的空间分布、变化规律及主要影响因素,并探讨了水体氮、磷形态的时空差异及其相应的控制对策.结果表明,蠡湖仍然没有从根本上解决水体的富营养化问题,水体中氮、磷浓度仍处于一种不稳定的状态,各采样点总氮(TN)浓度在0.74~4.93mg/L之间,平均值为1.35mg/L;总磷(TP)浓度在0.03~0.31mg/L之间,平均值为0.073mg/L.空间上,TN和TP浓度自东向西依次递减,呈现东蠡湖高于西蠡湖,沿岸区高于湖心区的趋势;季节上,TN、TP浓度呈现夏季、秋季较高,而冬季、春季低的特点;水体中氮主要以溶解态为主,DTN占TN的比例在35%~99%之间,平均为77.98%;而磷主要是以颗粒态的形态占优势,颗粒态磷占TP的比例在11%~90%之间,平均值为59%.多元统计表明,TN与DTN和总悬浮物(TSS)之间呈正相关关系,但与TSS的相关性系数较小,而TP与DTP和TSS都呈显著正相关.因此,要降低水体中氮磷浓度,可以从减少通过干湿沉降进入湖泊水体的氮磷或者降低沉积物再悬浮、抑制底泥氮磷释放两个方面入手.    

6.  太湖氮磷营养盐大气湿沉降特征及入湖贡献率  被引次数:6
   余辉  张璐璐  燕姝雯  李焕利  徐军《环境科学研究》,2011年第24卷第11期
   2009年8月—2010年7月在太湖流域不同区域10个采样点收集降水样品230多个,测定其中不同形态N,P营养盐的质量浓度,分析太湖大气湿沉降中N,P营养盐沉降特征,计算N,P营养盐湿沉降率及其占太湖河流入湖负荷的贡献率.结果表明:湿沉降中ρ(TN)年均值为3.16 mgL,DTN(溶解性总氮)占TN的70%以上,其中以NH4+-N为主;湿沉降中ρ(TN)年均值最高值出现在南部湖区,最低值出现在北部湖区.湿沉降中ρ(TP)年均值为0.08 mgL,相对较低.5个区域湿沉降中不同形态N的质量浓度均表现为冬季高、夏季低,而不同形态N,P的湿沉降量均为夏季最大.南部、东部湖区TN的湿沉降率相对较大.各采样点湿沉降中NH4+-N沉降率约占DTN沉降率的30.4%~52.0%,NO3--N沉降率约占DTN的31.6%;各区域间湿沉降中DTP(溶解性总磷)占TP的比例差异较大.大气湿沉降中TN和TP的年沉降总量分别为10 868和247 t,为同期河流入湖负荷的18.6%和11.9%,湿沉降对太湖富营养化的贡献及可能带来的水生态系统的影响不容忽视.    

7.  湘江株潭长段江水(枯水期)和沉积物中汞的分布和形态  被引次数:1
   郭振华  彭青林  刘春华  刘志华《环境科学》,2011年第32卷第1期
   湘江株潭长段江水中(枯水期)的总汞含量为(1.881±1.854)μg.L-1,以颗粒态汞为主.总汞和溶解态汞最大值都出现在霞湾,霞湾—湘潭段衰减快,此后缓慢衰减一直到洞庭湖.沉积物中总汞平均含量为0.846 mg.kg-1,处于高的污染水平,沉积物总汞的最大值也出现在霞湾,达到3.268 mg.kg-1.远远超过国家土壤污染三级标准.霞湾—马家河段是汞的主要沉积段,总汞含量平均为2.218 mg.kg-1.易家湾—橘子洲江段沉积物中总汞含量大幅下降,平均为0.442 mg.kg-1.进入长沙段后,汞含量下降缓慢.沉积物孔隙水中汞浓度平均为0.035μg.L-1,与沉积物总汞没有显著的相关性.沉积物中的汞主要以残渣态、有机结合态、水溶态和可交换态为主,能被重新活化的有机结合态汞含量较高,容易形成再次污染.沿程有机结合态汞比例略有下降,残留态汞比例略有升高,提示有机结合态汞可能部分转为残留态汞.该江段汞沉积层厚约65 cm,沉积层愈靠近顶部,总汞含量愈高.但靠近顶部30~25 cm,总汞含量不再增加.    

8.  陕西省潼关采金地区汞污染的初步研究  被引次数:5
   戴前进  冯新斌  仇广乐  蒋红梅《环境化学》,2004年第23卷第4期
   对采金地区水样、沉积物、土壤及部分水藻和苔藓的分析表明 :潼关采金地区已经受到严重的汞污染 .水体总汞浓度最高达 2 5 8 62 μg·l- 1 ,且水样中的汞以颗粒态为主 ,大都占 5 0 %以上 ,而活性汞和溶解态汞的平均浓度分别为 0 1 82± 0 2 4 2 μg·l- 1 和 0 72± 0 79μg·l- 1 ;沉积物中平均汞浓度为 34 98± 2 5 39μg·g- 1 ,最高达 1 1 96μg·g- 1 ;而土壤中汞的浓度最高也只有 1 9 5 0 μg·g- 1 .    

9.  黄浦江江水和沉积物中汞的分布和形态特征  被引次数:20
   丁振华  王文华  刘彩娥  汤庆合  庄敏《环境科学》,2005年第26卷第5期
   黄浦江江水的总汞、溶解态汞和颗粒汞含量变化较大,其平均值分别为(0.4±0.44)ng/mL、(0.27±0.42)ng/mL和(0.13±0.10)ng/mL,江水中汞以溶解态汞为主.黄浦江沉积物的总汞含量为70.52ng/g~387.30ng/g,平均汞含量为(204.03±97.41)ng/g.江水和沉积物中汞的沿江分布具有中游高,上游和下游低的特征,西渡—南浦大桥江段汞含量为整个黄浦江最高的江段,汞的分布特征与两岸工农业布局相一致.沉积物总汞与有机质显著相关,沉积物中高汞含量的地点都在高水汞点的下游,与河流的动力沉积特点一致.沉积物中汞以可交换态、腐殖酸结合态、残渣态为主,少量为碳酸盐结合态.从上游到下游,沉积物中可交换态汞具有两端高中间低的特点,而残渣态汞与此相反.在剖面方向上,沉积物中的汞主要集中在残渣态,少量为腐殖酸结合态,可交换态及碳酸盐结合态,随着深度增加残渣态所占比例不规则增加.愈接近长江口,沉积物中的重金属愈容易被重新激活.    

10.  乌江流域水体中不同形态汞分布特征的初步研究  被引次数:10
   蒋红梅  冯新斌  戴前进  王雨春《环境化学》,2004年第23卷第5期
   探讨了不同水文季节 (丰水期和枯水期 )乌江河水中汞的赋存形态及其在流域内的时空分布 ,结果表明 :乌江流域表层水体总汞的平均浓度分别为 :丰水期 65 9ng·l- 1 ,枯水期 1 6 6ng·l- 1 .乌江河水汞的主要形态为颗粒态 ,颗粒态汞占总汞的比例为丰水期84% ,枯水期 5 2 % .    

11.  辽河流域多环芳烃(PAHs)的分布特征及来源解析  
   张岩林  胡健  刘宝剑  李思亮  灌瑾《地球与环境》,2012年第2期
   采用气相色谱-质谱(GC/MS)的分析方法,对辽河水系主要河流的表层水和悬浮物中的16种PAHs进行了定量分析,并对其分布特征、污染水平以及来源进行了探讨。结果显示:颗粒态PAHs的浓度范围为0.41~76.45μg.g-1,溶解态PAHs的浓度范围为32.57~108.47ng.L-1,西辽河PAHs的浓度比东辽河以及辽河干流中PAHs的浓度要高。在多环芳烃组成上,溶解态和颗粒态样品的PAHs均以低环数(二、三环)为主,且溶解态中低环数PAHs所占比例较颗粒态中所占的比例高。其中,溶解态中二环的PAHs比例最高(平均为68.19%),颗粒态中三环的PAHs比例最高(平均为66.28%)。相对于国内外其他河流,辽河流域的PAHs污染处于较低水平,部分河流受到一定程度的污染。辽河水系中PAHs的来源主要是以石油类和化石类燃料燃烧为主的混合源,这与辽宁复杂的能源结构密切相关。    

12.  夏季长江口中颗粒态及溶解态正构烷烃组成和迁移  被引次数:6
   戚艳平  吴莹  张经  何青《环境科学学报》,2006年第26卷第8期
   为阐释长江口颗粒态、溶解态正构烷烃的时空分布特征,并初步探讨其迁移循环机制.2001年7月在长江口分表、底层采集溶解态与颗粒态样品,采样区域的氯度跨度为0.028‰~16‰.样品经有机抽提和气相色谱定量分析,检测到表层溶解态、颗粒态正构烷烃总浓度分别为0.19~4.1μg·L-1和0.19~3.6μg·L-1;底层溶解态、颗粒态正构烷烃浓度分别为0.12~1.9μg·L-1和0.63~4.2μg·L-1.结果显示,长江口水体中正构烷烃碳数多分布在n-C15~n-C36间,正构烷烃碳数浓度分布呈高碳数优势、双峰型优势和低碳数优势3种关系.特征参数表明,长江口有机物呈显著的陆源有机质输入特征;且由长江口向外,陆源输入逐渐减弱.固-液分配系数Kd在不同站位和不同化合物间差异较大;同时Kd还存在颗粒物浓度效应.河口区颗粒态正构烷烃迁移的控制因素主要有潮周期的变化和沉积物再悬浮等.    

13.  贵阳市阿哈湖水体和沉积物间隙水中汞的含量和形态分布初步研究  被引次数:13
   白薇扬  冯新斌  孙力  何天荣  付学吾  蒋红梅《环境科学学报》,2006年第26卷第1期
   为了弄清楚酸性矿井废水的排放是否对阿哈湖造成了汞污染,研究了阿哈湖中汞的各种赋存形态(包括溶解气态汞、活性汞、颗粒态汞、溶解态汞、溶解态甲基汞、颗粒态甲基汞以及沉积物间隙水体的溶解态汞、溶解态甲基汞)及其在水体和沉积物间隙水中的剖面分布.结果显示,阿哈湖水体中溶解气态汞的浓度为0.04~0.09ng·L-1,活性汞浓度为0.2~1.1ng·L-1,总汞浓度为2.08~19.14 ng·L-1,甲基汞浓度为0.002~0.43 ng·L-1;在沉积物间隙水体中溶解态汞浓度为1.72~19.12 ng·L-1,溶解态甲基汞浓度为0.03~1.57 ng·L-1.实验数据表明,溶解态甲基汞浓度在沉积物下2~5 cm处最高,随着深度增加而逐渐降低,其与硫酸盐还原菌(SRB)分布呈现较好的吻合,说明水体-沉积物界面是甲基汞的产生地点;并且在沉积物中高浓度硫酸根浓度高达1100 mg·L-1的条件下,硫酸根浓度与甲基汞浓度依然一致.    

14.  广东韶关地区大气氮干湿沉降特征研究  被引次数:1
   刘思言  陈瑾  卢平  李来胜  陈中颖《生态环境》,2014年第9期
   2012 年4 月-2013 年9 月利用自动分离干湿沉降的采样器对广东省韶关市降雨和干沉降进行采集,分析样品降雨量、降尘量及氮营养盐干湿沉降浓度,计算各指标干湿沉降通量,利用沉降通量分析其影响因素及季节性变化趋势,为该地区大气氮沉降的通量预测及其环境管理提供支持,并为其生态环境中污染物的控制与减排提供科学依据.结果表明,观测期间总氮干沉降通量、湿沉降通量和总沉降通量平均值分别为47.73、295.7 和310.5 kg·km^-2·month^-1.氨态氮、硝酸盐氮与有机氮干沉降通量平均值分别为17.39、12.98 和17.37 kg·km^-2·month^-1,其湿沉降通量平均值分别为132.4、117.0 和46.23kg·km^-2·month^-1.总氮湿沉降通量占总氮总沉降通量平均比例为83.19%,说明总氮沉降通量以湿沉降为主.影响因素方面,总氮干沉降通量与降尘量无相关性;湿沉降受降雨量影响较大,所以受雨季影响,韶关地区4-6 月总氮湿沉降负荷较大.成分组成上,干沉降中氨态氮平均占总氮比例35.48%,硝酸盐氮平均占27.96%,有机氮平均占36.55%,因此该地区氮营养盐干沉降中以氨态氮和有机氮为主;氮营养盐湿沉降以氨态氮和硝酸盐氮为主,氨态氮平均占总氮比例46.87%,硝酸盐氮平均占40.64%,有机氮平均比例为12.49%,说明该地区湿沉降同时受到农业活动和工业活动的影响.季节变化上,氮营养盐干沉降通量由大到小依次为冬季、春季、秋季、夏季,湿沉降通量春季较高,夏秋两季较低.    

15.  桑沟湾养殖区铝的分布及季节变化  被引次数:2
   张国玲  任景玲  张继红  张经《海洋环境科学》,2010年第29卷第6期
   根据2006年4月、7月、11月和2007年1月对桑沟湾进行的调查,分析了溶解态Al和颗粒态Al的分布及季节变化.结果表明,桑沟湾溶解态Al的分布呈现出明显的季节变化,夏季最高,浓度为(64.1±45.1)nmol/L,春秋季次之,浓度分别为(60.8±29.1)nmol/L和(60.3±15.5)nmol/L.冬季最低,浓度为(31.2±9.6)nmol/L.因悬浮颗粒物的类型不同,春季和冬季颗粒物中Al的含量较高,夏季和秋季含量较低;颗粒物中可交换态Al所占的比例为春季和夏季比较高,夏季醋酸提态所占的比例可高达(2.19±0.88)%,颗粒物中Al主要以残渣态存在.讨论了颗粒物对溶解态Al分布的影响并计算了Al在颗粒物表面的分配系数及其在海水中的存留时间,Al的界面分配系数Kd的范围为0.24×105~1.3×106mL/g,平均值为(3.6×105±2.6×105)mL/g,其中SPM的范围为8.0~60.6 mg/L.根据箱式模型初步估算了桑沟湾溶解态Al的存留时间约为(36±17)d,进一步认识了Al的生物地球化学行为.    

16.  红枫湖生物地球化学过程中Zn的赋存形态及季节性变化特征  
   梁莉莉  刘丛强  王中良  宋柳霆《生态环境》,2008年第17卷第4期
   通过对贵阳市红枫湖中溶解态锌、颗粒态锌及颗粒态锌中不同结合形态的研究,探讨了红枫湖生物地球化学过程中锌的主要赋存形态与季节性变化规律.结果发现,红枫湖总锌的质量浓度为0.72μg·L-1~13.04 μg·L-1,污染较轻.红枫湖南湖总锌全年均高于北湖,主要是位于南部的羊吕河输入所致.红枫湖水体中锌的主要赋存形式是溶解态锌(占总锌的70%);颗粒态中AEC(吸附态-可交换态-碳酸盐结合态)结合态锌是最主要的赋存形式(占颗粒态锌的72%).溶解态锌含量夏季低而冬季高,_主要是因为复季生物吸收与吸附、以及冬季沉积物孔隙水向上覆水体的释放.颗粒物中有机结合态锌的变化主要受湖泊藻类繁殖的影响.    

17.  用 Moss Bag 富集研究汞矿附近元素汞的沉降  被引次数:3
   谭红  何锦林  何听涛《环境科学》,1997年第18卷第6期
   应用MossBag监测元素汞的干湿沉降.结果表明:矿区大气汞浓度200—1135ng·m-3时汞的湿沉降为1700μg·m-2·a-1;干沉降987μg·m-2·a-1.而当距矿区67km,大气汞浓度3.4—4.0ng·m-3时,其干沉降21μg·m-2·a-1,湿沉降33μg·m-2·a-1,湿沉降占总沉降61%—63%,干沉降占37%—39%,元素汞的干湿沉降与距汞源的距离明显相关    

18.  乌江流域表层水体中汞的形态与时空分布特征  被引次数:1
   陈瑜鹏  冯新斌  郭艳娜  蒋红梅  杨芳《地球与环境》,2010年第38卷第2期
   为了弄清乌江流域表层水体中汞的形态与时空分布规律,于2009年1~12月,每月采集乌江流域河流表层水样,采用两次金汞齐-冷原子荧光光谱法和蒸馏-乙基化结合GC-CVAFS法测定了水中不同形态汞的浓度。结果表明:(1)监测期间各采样点总汞、甲基汞、溶解态汞、颗粒态汞、活性汞、颗粒态甲基汞、溶解态甲基汞的年均算数平均值分别为5.20±10.89、0.09±0.20、3.31±10.66、1.89±1.08、0.30±0.36、0.06±0.19、0.04±0.03 ng/L。不同形态汞的沿程分布显示,水库的修建改变了原有的汞的地球化学过程。(2)通过不同季节各形态汞浓度的变化发现,河流表层水中不同形态汞有明显的季节变化趋势。(3)相关分析发现,总汞受总悬浮颗粒物含量的影响相对较大;活性汞浓度的季节变化可能与降雨对乌江水体的影响有关。    

19.  三门峡水库水体中不同形态汞的分布特征  被引次数:1
   程柳  麻冰涓  周伟立  王力  职音  刘清伟  毛宇翔《环境科学》,2017年第38卷第12期
   为了解三门峡水库水体中不同形态汞的分布特征,在丰水期和枯水期对三门峡水库进行采样,分别采用冷原子荧光光谱法(CVAFS)和蒸馏-乙基化衍生-气相色谱-冷原子荧光法(GC-CVAFS)测定水样中总汞、总甲基汞、溶解态总汞和溶解态甲基汞的浓度.结果表明,三门峡水库水体中总汞、溶解态汞和颗粒态汞浓度范围分别为1.65~9.65、0.80~3.16和0.70~7.81 ng·L-1,符合国家地表水环境质量标准(GB 3838-2002)一类水汞浓度标准限值;总甲基汞、溶解态甲基汞和颗粒态甲基汞浓度分别为0.05~0.36、0.02~0.14和ND~0.26 ng·L-1.三门峡水库水体总汞和甲基汞在季节和空间分布上没有呈现出明显的变化规律.总汞和甲基汞与未受污染的天然水体差别不大,水库未受到明显的汞污染.丰、枯水期沉积物中总汞浓度分别为(92.96±10.65) ng·g-1和(80.06±19.14) ng·g-1,甲基汞浓度分别为(0.33±0.14) ng·g-1和(0.50±0.19) ng·g-1.较低的甲基汞浓度说明在三门峡水库汞的迁移转化过程中,甲基化作用可能并非主要的过程,这可能与水体底层溶解氧浓度较高以及沉积物中有机质浓度较低有关.    

20.  霾与非霾期间汞在不同粒径颗粒物上的分布特征  被引次数:1
   朱琼宇  程金平  魏雨晴  薄丹丹  陈筱佳  江璇  王文华《环境科学》,2015年第36卷第2期
   在我国高速经济增长过程中,霾污染日趋突出,同时大气汞污染也十分严重,而颗粒汞对于汞在大气中的循环演化意义重大.为了探讨霾污染期间汞在不同粒径颗粒物中的分布特征,采用Nano-moudi 12级(6.2~9.9μm、3.1~6.2μm,1.8~3.1μm、1.0~1.8μm、0.56~1.0μm、0.32~0.56μm、0.18~0.32μm、0.10~0.18μm,0.056~0.10μm、0.032~0.056μm、0.018~0.032μm、0.010~0.018μm)大气颗粒物采样器,对上海霾与非霾期间不同粒径大气颗粒物中的汞进行分析.结果表明,颗粒态汞含量与颗粒物含量正相关;采样期间霾天颗粒态汞平均浓度0.31 ng·m-3是非霾天颗粒态汞平均浓度0.11 ng·m-3的2~3倍;霾和非霾天颗粒态汞浓度以及颗粒物质量浓度随粒径分布呈双峰型,霾期间峰值分别出现在0.56~1.0μm粒径段和3.1~6.2μm粒径段,而非霾期峰值分别出现在0.32~0.56μm和3.1~6.2μm粒径段;霾天较非霾天颗粒态汞和颗粒物的粒径分布均出现了向大粒径方向偏移;颗粒态汞主要分布在粒径≤1μm粒子上,能够长时间停留和长距离输送;非霾期间颗粒态汞在颗粒物中的平均含量为0.029 ng·μg-1,而霾期间为0.015 ng·μg-1;霾污染过程中其他污染物迅速成长,而汞成长较慢;霾天积聚核模态粒子中颗粒态汞质量浓度为2.06 ng·m-3,而非霾天为0.55 ng·m-3,积聚态颗粒物的大幅增加,是灰霾形成的主要原因.本地源燃煤等的排放以及风沙扬尘的增加和外地源的输送是导致霾天污染严重的重要原因.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号