首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 296 毫秒
1.
杭州大气颗粒物散射消光特性及霾天气污染特征   总被引:7,自引:6,他引:1  
徐昶  叶辉  沈建东  孙鸿良  洪盛茂  焦荔  黄侃 《环境科学》2014,35(12):4422-4430
2011年7月~2012年6月期间,对大气散射系数、颗粒物浓度及气象因子进行同步观测,以评估颗粒物散射消光对杭州市大气能见度的影响.结果表明,杭州市大气颗粒物散射系数日均值变化范围为108.4~1 098.1 Mm-1,年均值为428.62Mm-1±200.2 Mm-1.散射系数呈明显的季节变化,秋冬高,夏季低.日变化呈典型的双峰型,早峰出现在08:00,晚峰出现在21:00.PM2.5和PM10的散射效率分别为7.6 m2·g-1和4.4 m2·g-1,颗粒物散射消光占总消光比例的90.2%.灰霾和重度灰霾天气下,散射系数分别为684.4 Mm-1±218.1 Mm-1和1 095.4 Mm-1±397.7 Mm-1,达到非霾天气的2.6和4.2倍,表明颗粒物散射消光作用是导致杭州市大气能见度下降和灰霾天气发生的主要因素.  相似文献   

2.
天津城区春季大气气溶胶消光特性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
利用天津大气边界层观测站2011年4月1日~5月10日气溶胶散射系数、吸收系数、PM2.5质量浓度、大气能见度和常规气象观测数据,分析了气溶胶散射系数和吸收系数的变化特征,以及气溶胶消光系数与PM2.5质量浓度和大气能见度的关系,并对两种方法计算的消光系数进行了比较.结果表明,观测期间天津城区气溶胶散射系数为369.93 Mm-1,对大气消光贡献为86.7%,气溶胶吸收系数为36.32 Mm-1,对大气消光贡献为8.5%,单次散射反照率为0.91;气溶胶散射系数和吸收系数的日变化特征具有明显的双峰结构,对应于早晚交通高峰;不同天气类型下其日分布特征存在较大差异,霾日散射系数和吸收系数最高,沙尘日和降水日次之,晴日最低;气溶胶散射系数和吸收系数与PM2.5质量浓度呈线性正相关,与大气能见度呈指数负相关,观测期间气溶胶质量散射效率均值为2.95m2/g;采用Koschmieder’s公式反算能见度获得的大气消光系数,与通过测量气溶胶散射系数、气溶胶吸收系数、气体散射系数和气体吸收系数等分量加和获得的消光系数相比一致性较好,高相对湿度天气下能见度反算值高于各系数加和值.  相似文献   

3.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

4.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.  相似文献   

5.
利用微脉冲激光雷达分析上海地区一次灰霾过程   总被引:20,自引:7,他引:13  
通过分析2008年6月至2009年5月期间浦东新区灰霾天气出现的特征,并以2008年12月19日至2008年12月21日一次典型的灰霾天气过程为例,利用激光雷达(Light laser detection and ranging,简称Lidar)数据资料反演得到气溶胶消光系数及其强度图和廓线图,结合地面气象数据和气溶胶观测资料,分析了此次灰霾天气形成的原因.一年的观测资料表明,上海地区冬季和春季易产生灰霾天气,冬季出现重度霾最多,秋季和夏季灰霾天气较少.较弱的太阳辐射以及静风、小风是导致灰霾天气发生的重要原因,且高湿度的霾天气对能见度影响更大.大气边界层(以下简称边界层)高度变化决定着灰霾天气发生的强度,当边界层高度在1km左右时,易发生轻微霾天气,当边界层高度降至600m左右时,易发生中度、重度霾天气,而太阳辐射强度变化决定着边界层高度的变化.轻微霾天气下,大气气溶胶垂直分布最强消光值约为0.15km-1,而重霾天气下可达0.30km-1以上.本次霾过程还受地面颗粒物排放的影响,主要是PM1和PM2.5,且在消光作用中散射性气溶胶的贡献大于吸收性气溶胶.轻微霾天气下PM2.5浓度为50μg·m-3,黑碳浓度为5000ng·m-3,浊度为200Mm-1,而重度霾时则分别达到200μg·m-3、24000ng·m-3和1400Mm-1.随着此次霾的出现,整层大气气溶胶光学厚度(AOD,550nm)不断增加,在重度霾时达到0.6左右,Angstrom指数在重度霾时显著降低,表明有大颗粒物导入,说明此次重度霾天气的发生还与气溶胶的输送有关.  相似文献   

6.
针对2012年珠江三角洲地区出现的2个典型灰霾个例(3月18~21日,10月13~15日),利用广州番禺大气成分综合观测基地的同期观测资料集,包括:能见度(VIS)、大气颗粒物质量浓度(PM10/PM2.5/PM1)、黑碳浓度(BC)等观测数据,分析过程中的气溶胶物理光学特征;配合过程的天气类型,气象要素和后向气流轨迹等对过程的成因进行综合分析.结果表明:在两个典型灰霾过程中,番禺日均能见度低至5.3km,黑碳浓度小时均值最高达19.0μg/m3、PM2.5浓度小时均值最高达163.0μg/m3,细粒子与黑碳粒子污染特征较为明显.两次典型灰霾过程分别受到冷锋前-均压场-冷锋前天气形势和台风外围-准均压场-冷锋前天气类型等不利于污染物输送扩散的气象条件影响.珠江三角洲地区低能见度的霾天气主要发生在高相对湿度的条件下,并可推断在珠江三角洲地区湿季的气溶胶吸湿能力明显高于干季.  相似文献   

7.
在世界无车日期间对PM2.5化学组分、光学参数及气态污染物进行同步监测,评估机动车尾气排放对杭州市细颗粒物污染及能见度的影响.结果表明:管制期间NO2、NOx、CO和PM2.5浓度分别为45.0, 50.8, 1119, 85.8μg/m3,比平日分别下降了17.5%、23.3%、20.6%和32.6%.管制期间PM2.5中OC、EC和二次无机组分浓度为8.58, 4.29, 25.95μg/m3,比管制前下降了13.8%、12.6%和15.7%,管制后则达到20.24, 10.85, 27.39μg/m3,上升了136.0%、152.7%和5.5%.管制期间较高的NO3-/PM2.5和NOR(0.15)表明PM2.5的形成更多受二次无机转化影响,管制后PM2.5中上升的OC、EC比例和较低的NOR(0.07)则说明PM2.5主要来自机动车排放的碳质组分的贡献.硫酸盐、硝酸盐、有机气溶胶和EC是最主要的消光组分,共解释了总消光系数的74.0%~89.7%.管制后,机动车排放的有机物和EC消光比例达到26.6%和24.6%,大气消光系数则达到438.7Mm-1,比管制期间上升了60.5%,表明机动车污染排放已成为影响杭州大气细颗粒物污染和能见度下降的重要因素.  相似文献   

8.
PM2.5中水溶性有机物吸光特性的模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究建立了超声雾化器与光声光谱仪,扫描电迁移率颗粒物粒径谱仪联用的分析系统,将深圳市2011年夏季采集的PM2.5膜样品提取液雾化发生气溶胶,使之进入光声光谱仪检测其吸光强度以研究气溶胶中水溶性有机物(WSOM)的吸光特征.结果表明:观测期间PM2.5中WSOM平均质量浓度为(4.3±2.3)μg/m3,分别占PM2.5和OM质量浓度的11.9%±4.8%和49.2%±18.5%.WSOM在405,532,781nm波长下的质量吸收效率值(MAE)分别为(0.55±0.31),(0.54±0.31),(0.21±0.13)m2/g.经计算所得:深圳市夏季大气PM2.5中WSOM在405,532,781nm波长下的平均吸收系数分别为(2.30±1.08),(2.25±1.26),(0.86±0.45)Mm-1,对应的WSOM对大气PM2.5整体吸光效应的贡献率分别为7.6%,10.6%和5.8%,说明WSOM对PM2.5整体吸光效应的贡献不容忽视,有机气溶胶在大气灰霾中的能见度损害作用值得进一步深入研究.  相似文献   

9.
南京北郊能见度变化中二次无机盐消光的重要作用   总被引:1,自引:1,他引:0  
利用2013年5月~2014年5月的能见度和大气气溶胶化学组分资料,分析南京北郊能见度变化特征、气溶胶化学组分与能见度变化的关联及其对大气消光的贡献,识别在能见度变化中二次无机盐消光的重要作用.结果表明,观测期间平均能见度为(6.78±3.68)km,能见度存在显著的季节变化.粒径小于2.1μm的细粒子对能见度降低有较大影响,SO2-4、NO-3、NH+4和OC是细粒子主要成分,其中二次无机离子对重霾日能见度恶化具有重要贡献.利用修正的IMPROVE方程重建观测期间消光系数,均值为(527.2±295.2)Mm-1,PM2.1化学组分中硫酸铵、硝酸铵以及有机物对消光系数贡献最大,达到80.6%.尽管在清洁日(VR10 km)有机物的消光贡献高达43.51%,但随着能见度降低,有机物消光贡献减少,二次无机盐组分消光贡献增加,在低能见度的重霾日(VR5 km)二次无机盐消光贡献达到58.96%,表明二次无机盐消光对能见度恶化具有重要作用.  相似文献   

10.
济南秋季霾与非霾天气下气溶胶光学性质的观测   总被引:12,自引:2,他引:10       下载免费PDF全文
应用黑碳仪和积分浊度计于2009年10月11日至11月18日针对济南市大气气溶胶的光学特性进行了观测.结果显示,观测期间霾天气的散射系数和吸收系数及非霾天气的散射系数和吸收系数平均值分别为(582.5±311)Mm-1、(680.2±47.2)Mm-1和(205.7±134.8)Mm-1、(31.0±25.8)Mm-1.霾天气的气溶胶散射系数和吸收系数分别为非霾天气的2.6倍和2.8倍,单词散射反照率(SSA)也高于非霾天气.霾天气中二次气溶胶生成及黑碳气溶胶聚集是改变吸收系数、散射系数和SSA的日变化趋势的重要原因.此外,估算了观测期间及霾和非霾天气中气溶胶的光学厚度(AOD)分别为0.78,1.14和0.47.后向气流轨迹分析显示,非霾天气的气流主要来自于济南的西北至东北方向,运动速度快;而霾天气的所有的气流均来自于济南西南至东南方向,运动速度慢,当气流经过山东南部的火点时加剧了济南市的霾,并严重影响到该地区大气气溶胶的光学性质.  相似文献   

11.
西安泾河夏季黑碳气溶胶及其吸收特性的观测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.  相似文献   

12.
东莞与帽峰山黑碳气溶胶浓度变化特征的对比   总被引:4,自引:0,他引:4       下载免费PDF全文
将东莞(海拔30m,位于平原地区)与帽峰山(海拔550m,位于山地地区)的黑碳气溶胶(BC)浓度进行对比,结果表明,东莞地区BC浓度年均值为5.27mg/m3,帽峰山BC浓度值为2.43mg/m3,两个站点的浓度都比位于珠三角核心区的南村站浓度(8.42μg/m3)低.雨季,东莞与帽峰山BC浓度的日变化特征在中午呈现反位相,这是因为两站近地层受上升气流控制,热对流把地面的BC气溶胶带至高空,地面浓度下降,东莞出现谷值,而高空有了地面的垂直输送补充,帽峰山出现峰值.旱季,华南地区受高压控制,微弱下沉气流对于BC的垂直输送不利,BC的扩散以平流扩散为主,两地日变化情况相近.此外,受BC源远近的影响,东莞的逐月变化(标准差为0.60μg/m3)大于帽峰山(标准差为0.14 μg/m3).通过分析BC吸收系数的波长幂指数α探讨可能的污染来源,发现两地的α值均接近于1,说明两地BC的污染来源相同,均来自于化石燃料的燃烧.  相似文献   

13.
天津冬季雾霾天气下颗粒物质量浓度分布与光学特性   总被引:1,自引:0,他引:1  
年1—2月连续在线观测天津ρ(PM2.5)、ρ(PM10)、大气能见度、σsp(气溶胶散射系数)、σap(气溶胶吸收系数)和AOD(大气光学厚度),结合气象资料,分析天津城区雾霾天气下的颗粒物质量浓度分布与光学特性. 结果表明:在为期52d的观测期间,发生雾日8d、轻雾日1d、霾日29d,雾霾日占观测时长的73%;霾日ρ(PM2.5)/ρ(PM10)为0.65,SSA(单次散射反照率)为0.95,MSE(气溶胶质量散射系数)为3.30m2/g,均高于非雾霾日,表明雾霾日下细粒子的散射作用是大气消光的主要贡献者;雾霾日的σsp和σap均高于非雾霾日,随着霾等级增强,σsp和σap逐渐增大,重度霾天气的σsp和σap与中度霾天气相当,分析高RH可能是造成能见度进一步降低的主要因素;雾霾天气下AOD500nm和波长指数均显著高于非雾霾天气,表明雾霾天气下气溶胶浓度远高于非雾霾天气,并且细粒子占主导地位.   相似文献   

14.
石家庄春季大气气溶胶的散射特征   总被引:3,自引:0,他引:3       下载免费PDF全文
利用2010年5月积分浊度仪、PCASP-X2和能见度仪的观测资料,分析了石家庄大气气溶胶的散射特征及其与气溶胶粒子浓度、能见度、气象条件的关系.结果表明,观测期间,450,550,700nm 3个波段的气溶胶散射系数平均值±标准差分别为(257±293),(199±237)和(143±173)Mm-1,散射系数的变化很大,但气溶胶微物理特征相对比较稳定.散射系数日变化呈3峰分布,峰值出现在8:00、13:00和0:00.以550nm波长为例,气溶胶散射系数的变化范围为144~308Mm-1,夜间散射系数大于白天,非晴天散射系数平均值(524.9Mm-1)是晴天散射系数(112.3Mm-1)的4.7倍.气溶胶3个波段后向散射比均大于0.15,说明石家庄细粒子污染比较严重.散射系数和体积浓度成正比,但由于局地气象条件和污染源的影响,有气溶胶体积浓度变大,散射系数变化不大的情况出现.气溶胶散射系数和能见度呈负相关;根据Koschmieder公式计算得到的能见度,能较好反映实际观测情况.当大气相对湿度较高时,气溶胶散射系数随湿度增大呈现两种不同的变化趋势,即一部分气溶胶的散射系数有明显的增大,而另一部分则随着相对湿度的增加并未增大,反而比干气溶胶散射系数要小.局地风场也会影响气溶胶散射特性.  相似文献   

15.
杭州市大气颗粒物消光组分的粒径分布特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
2010年8月在杭州市朝晖、云栖、杭钢和下沙4个点位采集了不同粒径大气颗粒物样品,并对其主要消光组分的粒径分布特征进行了分析,包括SO42-、NO3-、NH4+、OC和EC等.同时在朝晖点位对多种气态污染物和多个气象要素进行了同步观测,以评估杭州市能见度下降的影响因素.结果表明:PM2.5、RH、SO2和NO2均与能见度呈一定负相关关系.4个监测点位颗粒物浓度变化均呈双峰型,峰值出现在0.4~0.7μm和9.0~10μm粒径段.以3.3μm为粗细颗粒的分界线,不同监测点位PM10中粗、细颗粒所占比例均等.水溶性离子消光组分的浓度大小顺序为:SO42->NH4+>NO3-. SO42-、NO3-和NH4+均显单峰结构,SO42-和NH4+的峰值出现在0.4~1.1μm的粒径段,NO3-峰值出现在5.8~10μm粒径段.OC显单峰结构,峰值出现在0.4~0.7μm粒径段;EC显双峰结构,峰值出现在0.4~0.7μm和2.1~3.3μm范围内.因而,要解决杭州的能见度问题,应减少细颗粒物,尤其是粒径<1.1μm的颗粒物的污染. NO3-、SO42-、OC和EC对杭州市颗粒物消光能力相对贡献率之比为2.2%:13.7%:29.8%:43.8%.因此要有效控制杭州市大气能见度的降低趋势, 首要的就是控制EC的主要排放源,即机动车尾气的排放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号