首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以污水厂填埋污泥为原料,在不同热解温度下制备了污泥生物炭(SBC),发现SBC能够高效活化过一硫酸盐(PMS),促进罗丹明B(RhB)降解,且900℃下制备的SBC降解RhB的速率常数(0.071 min-1)分别为300和600℃下制备的SBC的7.1和4.7倍.SBC/PMS体系中RhB的降解速率随着PMS剂量(0.2~0.8 mmol·L-1)的增加逐渐增加,达到0.8 mmol·L-1后,继续增加投加剂量(1.6~3.2 mmol·L-1)降解速率变化不明显;随着工作pH的提高(1~13),SBC/PMS体系中RhB的降解速率逐渐降低.光谱学分析显示,热解温度的升高会使官能团减少,提高SBC本身与PMS和RhB的电子传递速率,促进RhB高效降解.淬灭实验结果显示,SBC/PMS/RhB体系中产生的主要活性氧物种为1O2,其浓度约为1.5×10-10mol·L-1.本研究有望揭示SBC活化PMS处理难降解有...  相似文献   

2.
构建了非均相FeS/过一硫酸盐(PMS)体系,并与均相Fe(Ⅱ)/PMS体系对比降解非离子型碘代X射线造影剂—碘帕醇(Iopamidol,IPM)的效果.通过自由基淬灭、电子顺磁共振(EPR)和FeS反应前后的X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶红外(FTIR)等表征,探究了FeS活化PMS降解IPM的机理.同时,通过密度泛函计算(DFT)、HPLC/MS/MS解析IPM的中间产物及降解途径,对IPM降解过程中碘代消毒副产物—碘仿(CHI3)的生成量进行分析,并进一步采用生态结构活性软件(ECOSAR)预测IPM及中间产物的生态毒性变化.最后考察了初始pH、HCO3-、Cl-和腐殖酸(HA)对体系降解IPM的影响.结果表明,FeS/PMS体系非均相降解IPM的主要活性物种是SO4·-、·OH和1O2,而Fe()/PMS体系主要是SO4·-、·OH,F...  相似文献   

3.
朱敬林  汪舒 《环境科学》2023,44(7):3990-3996
Co(Ⅱ)活化过一硫酸盐(PMS)能有效降解有机膦酸,但氨基有机膦酸的降解机制并不明确.以氨基三亚甲基膦酸(NTMP)为例,采用电子顺磁共振波谱(EPR)、自由基捕获实验和化学探针实验等探究其在Co(Ⅱ)/PMS体系下的降解机制,并分析了NTMP可能的降解路径和影响其降解的因素.结果表明,Co(Ⅱ)/PMS体系20 min内NTMP已经被完全降解,反应60 min后,78.3%NTMP被氧化生成正磷酸盐(PO43-).1O2、 HO·和SO-4·对Co(Ⅱ)/PMS体系氧化NTMP的贡献较小,Co(Ⅱ)-PMS络合物是NTMP降解的主要活性氧化物种.NTMP与Co(Ⅱ)-PMS络合物反应,使其C—N键和C—P键断裂生成多种含膦酸基团的中间产物,并最终被氧化为PO43-.随着PMS投加量和Co(Ⅱ)投加量的增加,NTMP氧化过程中PO43-的产生率显著增加.此外,HCO<...  相似文献   

4.
采用溶剂热反应制备了分级微球结构的铁掺杂氯氧化铋(Fe-BiOCl),并用于光芬顿降解阿特拉津(Atrazine,ATZ).结合多因素实验,系统地分析了以Fe-BiOCl为催化剂构建的光芬顿体系氧化降解阿特拉津的性能与机理.结果表明,当催化剂用量为0.2 g·L-1、污染物浓度为20 mg·L-1、H2O2浓度为6.4 mmol·L-1时,Fe-BiOCl-2催化剂在120 min内降解阿特拉津的效率约为99.98%,且在较宽pH范围(3.04~6.02)内保持优异的降解效率.通过自由基猝灭实验和电子顺磁共振(EPR)测试发现,在光芬顿体系中羟基自由基(·OH)和超氧自由基(·O2-)是反应的主要活性物种.此外,通过超高效液相色谱测定降解过程中的中间产物,提出了可能的降解路径和转化机理.  相似文献   

5.
采用部分热分解法制备了氧基氯化铁(FeOCl),用于活化过一硫酸盐(PMS)降解难降解偶氮染料金橙Ⅱ(AO7).利用X射线光电子能谱分析(XPS)、扫描电镜(SEM)和X射线衍射光谱(XRD)对其进行了表征;通过实验评估FeOCl/PMS体系对AO7的降解效果并分析了影响AO7去除率的各种因素.结果表明:FeOCl活化PMS降解AO7效果良好,矿化率达44%.在中性条件下,当FeOCl投加量50mg/L、PMS浓度1.0mmol/L、AO7浓度0.05mmol/L时,AO7可在30min内完全降解.随PMS投加量、FeOCl投加量、Cl-浓度和反应初始pH值的增大,AO7的脱色效果提高.FeOCl还具有良好的重复利用性.此外,通过自由基淬灭实验、EPR测试和XPS分析了反应的主要活性物种和反应机理:由PMS活化产生的SO4-·和·OH对污染物进行降解,其中主要活性物种为SO4-·.  相似文献   

6.
针对印染工业园生化尾水中生物难降解的有机氮难题,采用O3-SBBR(臭氧-序批式生物膜反应器)联合工艺进行深度处理.开展了影响因素实验、降解动力学和淬灭实验,测定了自由基种类、琥珀酸脱氢酶活性和脱氮功能基因.结果表明,适宜的臭氧氧化条件:pH为8.0~8.5、ρ(O3)为35.0 mg·L-1左右、 O3投加量(以O3/H2O计,下同)约为100.0 mg·L-1和反应时间为90.0~120.0 min.臭氧氧化生化尾水的有机氮符合拟一级动力学模型,最大速率常数k值为0.010 35 min-1[实验条件:pH为8.0、 O3投加量为150.0 mg·L-1和ρ(O3)为35.0 mg·L-1].臭氧氧化显著提高序批式生物膜反应器(SBBR)的脱氮性能,脱氮效率从19.8%(SBBR)提高到32.9%(O3  相似文献   

7.
王渊源  阎鑫  艾涛  李卓  牛艳辉 《环境科学》2022,43(4):2039-2046
Co3O4具有优良的活化过硫酸盐的性能而受到人们的重视,但Co3O4粉体易团聚、使用过程中难以分离、易流失和重复利用率差等问题严重制约了其实际应用.通过水热法制备碳化三聚氰胺泡沫负载Co3O4非均相催化剂.采用X-射线衍射仪(XRD)和扫描电子显微镜(SEM)对催化剂的结构和表面形貌进行分析.研究不同因素对催化剂活化过硫酸氢钾(PMS)降解罗丹明B(RhB)的性能.其最优催化工艺参数:催化剂投加量为35 mg·L-1、PMS质量浓度为50 mg·L-1和pH为7、RhB初始质量浓度为10 mg·L-1,30 min反应后对RhB降解率为98%.结果表明,增大碳化泡沫负载Co3O4非均相催化剂投加量和PMS质量浓度能明显提高对RhB的降解率;而增加RhB初始质量浓度和提高pH值会明显抑制RhB的降解率.催化反应过程符合准一级动力学方程.温度对RhB降...  相似文献   

8.
采用模板蚀刻法合成单原子Co-C-N催化剂并催化过一硫酸盐(PMS)降解偶氮染料金橙Ⅱ(AO7).考察了催化剂投加量、PMS浓度、pH值和染料废水中常见的Cl-对Co-C-N/PMS体系去除AO7的影响,探讨了体系的反应机理,分析了矿化能力和催化剂重复利用性能.结果表明,在Co-C-N/PMS体系中,反应随着催化剂投加量和PMS浓度的升高而加快,pH=3.0~9.0的范围内均能有效去除AO7.中性条件下,当Co-C-N投加量50mg/L、PMS浓度1.0mmol/L、AO7浓度0.05mmol/L时,AO7可在10min内被完全去除.非均相体系活化产生的SO4·-是降解AO7的主要活性物种,基于C基诱导PMS产生的1O2也通过非自由基体系参与了降解反应,反应主要发生在催化剂表面.Co-C-N/PMS体系对AO7具有优良的去除能力和矿化效果.相较于单独Co-C-N吸附AO7过程,Co-C-N/PMS体系在提高反应速率的同时极大提升了催化剂的重复利用性能.  相似文献   

9.
为实现水中酰胺醇类抗生素氟苯尼考(FF)的高效降解,本研究设计了一种以碳纳米管(CNT)膜为阳极的穿透式电化学降解系统.采用真空过滤法制备CNT导电膜(CNT-CM),考察了流速、电压、电解质种类及浓度、初始pH值和FF初始浓度等因素对CNT-CM降解氟苯尼考的影响.结果表明,以CNT-CM为阳极的穿透式电化学系统对FF表现出良好的降解性能,流速、电压等对FF的去除具有显著影响.当停留时间为1.1 min(进水流速为2.5 mL·min-1),电压为3 V,对pH为3~10、初始浓度为0.05~10 mg·L-1的FF废水的平均去除率均可达97%以上.自由基淬灭实验表明,在Na2SO4体系中,CNT-CM降解FF主要通过直接氧化和·OH介导的间接氧化实现,在NaCl体系中,主要通过直接氧化作用和电极生成的活性氯实现.  相似文献   

10.
过氧乙酸[PAA,CH3C(O)OOH]作为一种新兴的氧化剂,在处理污水中难降解有机污染物中受到了越来越多的关注.通过蚀刻方法制备出纳米核壳Co@NC催化剂,并将其用于活化PAA降解污水中磺胺甲■唑(SMX).结果表明,当控制催化剂投加量为0.02 g·L-1、PAA浓度为0.12mmol·L-1和SMX浓度为10μmol·L-1时,反应5 min时SMX的去除率即可达到98%,且降解SMX的速率常数为0.80 min-1.SMX降解效率随催化剂添加量和PAA浓度提高而显著增加.结果发现核壳Co@NC/PAA体系在近中性条件下(pH为6.0~8.0)可获得最佳的SMX降解效果,酸性或碱性条件均不利于SMX去除.HCO-3和腐殖酸对该催化体系存在显著抑制,而Cl-抑制作用较弱.此外,通过自由基淬灭实验和电子顺磁共振(EPR)研究发现,乙酰氧自由基(CH3CO2·)和乙酰过...  相似文献   

11.
采用碳酸氢盐活化过氧化氢(BAP)类芬顿体系去除水中四环素污染物,研究了不同反应条件对四环素去除效果的影响,并探究了碳酸氢盐活化过氧化氢降解四环素的机理.结果表明,BAP体系的pH适应范围较宽;HCO3-浓度和H2O2浓度的增加可加速BAP体系高效降解水中四环素的反应;温度显著提升了BAP体系中四环素的去除速率;水中共存阴离子(Cl-、NO3-、SO42-)对BAP降解TC的影响不显著;当水中共存溶解性有机质浓度超过20 mg·L-1时,对BAP降解TC的抑制作用明显.在不同的影响因素实验中,最优反应条件的TC去除率均保持在85%以上.自由基淬灭实验和电子顺磁共振鉴定结果表明体系中产生了CO3·-、HO·、O2·-和1O2,其中CO3·-起主要作用.在最优反应条...  相似文献   

12.
双酚A(BPA)是一种典型的内分泌干扰物(EDCs),对人体和生物都存在毒性风险.高级氧化技术(AOPs)因其能产生大量的活性物种来降解污染物,成为目前处理环境中污染物最常用的方法之一.本研究采用紫外联合过氧化镁(UV/MgO2)体系降解水体中的BPA,并探究了该体系对BPA的降解机制.实验结果表明,UV/MgO2体系能够高效降解水体中的BPA,在1 h内降解率可达98%,体系降解的反应速率对比单独MgO2和单独UV降解分别提高了约48倍和18倍.数据显示在0.5 g·L-1 MgO2浓度下BPA的降解速率最快.水体的pH、不同水体及水体中的不同离子对UV/MO2体系降解BPA具有一定的影响作用(其中,SO42-、HCO3-和HA有明显抑制作用),总体来说,体系的适应性较强.通过电子自旋共振(EPR)检测得知体系中存在·OH、1O2  相似文献   

13.
采用共沉淀法制备了铁锰双金属复合催化剂(MnFe2O4),用于活化过一硫酸盐(PMS)产生强氧化性的硫酸根自由基(SO4-·)氧化降解水中阴离子表面活性剂(LAS).采用傅立叶变换红外光谱仪(FTIR)、X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)对催化剂进行表征,表明成功合成了具有尖晶石结构的MnFe2O4催化剂.考察了催化剂投加量、PMS投加量以及初始pH值等各种因素条件对LAS的降解效率以及反应动力学的影响.实验结果表明,MnFe2O4活化PMS降解LAS的过程符合准一级动力学(R2>0.9).在LAS初始浓度为80mg/L,催化剂投加量为2.0g/L,PMS的浓度为2.5mmol/L,初始pH值为7.0,反应时间为30min的情况下,LAS降解效率达到94.1%,此时LAS的降解速率常数达到0.192min-1.通过自由基猝灭实验证明了MnFe2O4/PMS体系中起主要氧化降解作用的活性自由基为SO4-·.通过反应前后催化剂的X射线光电子能谱(XPS),证实Fe和Mn之间存在协同作用,提高了MnFe2O4对PMS的活化效率.  相似文献   

14.
采用新型磁性催化材料尖晶石型铁酸铜(CuFe2O4)活化过硫酸盐(PMS)降解氧杂蒽类染料罗丹明B(RhB),考察PMS浓度、CuFe2O4投加量、pH值和水中常见离子对RhB降解的影响.结果表明,当RhB、PMS、CuFe2O4初始浓度分别为5 μmol/L、0.1mmol/L、0.1g/L时,在中性条件下反应30min后RhB去除率可达88.87%.其中,Cl-和HCO3-对RhB的降解无显著影响,而H2PO42-、C2O42-及腐殖酸明显抑制RhB的降解.自由基鉴定实验表明,在中性及弱碱性条件下SO4-和·OH是CuFe2O4/PMS体系降解RhB的主要自由基.研究发现随着RhB的降解,溶液逐渐褪色并伴随着甲酸根、乙酸根、草酸根和铵根离子的生成,原因在于SO4-和·OH可以破坏RhB分子的发色基团,使苯环开环和氮原子脱落,形成相应的降解产物.矿化实验表明0.2mmol/L的RhB在CuFe2O4/PMS体系中反应10h后,矿化率可达62%.催化剂的重复利用实验表明制备的CuFe2O4具有良好回收再利用能力.  相似文献   

15.
以TiO2和FeCl3为原料,通过水热-煅烧的方法成功制备了具有高可见光催化活性的Fe/TiO2-X催化剂并将其应用于催化活化过硫酸盐降解BPA的研究中.结果表明,研究体系具有优秀的催化氧化能力,BPA(50mg/L)的降解率在40min内达到100%,矿化度达到68.92%,研究同时对复合材料中有无Ti3+的自掺杂以及催化剂的投加量、PS浓度对体系降解有机物效能的影响进行了探究.该体系可通过自生光电子还原Fe3+实现三价铁和二价铁的高效循环.硫酸根自由基(SO4-·)和羟基自由基(·OH)为体系中主要的活性氧化物质,其中·OH贡献率超过66.2%.研究结果同时表明,碱性环境以及体系中的CO32-对体系降解效能具有抑制作用.  相似文献   

16.
采用溶剂热法,制备金属有机骨架(MOFs)材料MIL-101(Fe)吸附去除水中的NO3-,利用Box-Behnken响应面法对MIL-101(Fe)的合成条件进行了优化,设定FeCl3投加量、TPA投加量及合成时间3个影响因素,建立了NO3-吸附量与各因素之间的二次多项式模型,确定了MIL-101(Fe)的最优合成条件,并利用SEM-EDS、FTIR和BET等方法对吸附材料进行了表征.同时,通过静态吸附实验,探究了MIL-101(Fe)投加量、吸附时间、溶液pH值对材料吸附性能的影响.结果表明,MIL-101(Fe)吸附NO3-的最优条件为:MIL-101(Fe)投加量0.2 g,pH=8.0,温度15℃,NO3-初始浓度30 mg·L-1,吸附时间120 min,在此条件下NO3-的吸附量为12.12 mg·g-...  相似文献   

17.
N原子杂化石墨烯高效活化过一硫酸盐降解RBk5染料废水   总被引:6,自引:4,他引:2  
过硫酸盐高级氧化技术使用过程中,活化剂的大量流失与其环境二次危害是影响该技术应用的主要限制因素.针对这一问题本研究采用改进的Hummers法结合水热法制备环境友好型的N原子掺杂石墨烯作为催化剂,活化过一硫酸盐(PMS)产生硫酸根自由基(SO4-·)和羟基自由基(·OH)降解活性黑5(RBk5)染料.利用傅立叶红外光谱,X-射线光电子能谱,拉曼光谱和透射电子显微镜对N原子掺杂石墨烯进行表征.对催化剂催化性能进行研究,考察了初始p H、催化剂投加量和PMS投加量等因素对降解过程的影响.结果表明,N元素掺杂能够有效提升石墨烯材料的PMS催化活性,且活性受N掺杂比例影响较大;废水的初始p H对降解效率无明显影响.催化剂投加量为1. 5 g·L-1,PMS投加量为0. 3 g·L-1的条件下,反应25min后RBk5染料废水的降解率可达到99%以上,反应过程符合一级反应动力学.自由基猝灭实验显示,N掺杂石墨烯/PMS体系降解RBk5为表面反应,SO4-·和·OH为降解RBk5的主要自由基.循环实验证明催化剂稳定性能良好.  相似文献   

18.
为了发挥均相体系中过渡金属元素对PMS(过硫酸氢钾)的催化效果,同时解决存在的金属离子污染的问题,以AO7(酸性橙7)为目标污染物,研究了采用溶胶-凝胶法(sol-gel method)制备Fe-MnOx(铁锰双金属氧化物)催化剂催化PMS的效果及降解机理. 结果表明:ρ(Fe-MnOx)由50 mg/L升至200 mg/L后,35 min时AO7降解率由53.74%升至96.65%;继续升高ρ(Fe-MnOx),AO7降解率提升效果不明显. 随着ρ(PMS)0(PMS初始质量浓度)的升高,AO7的降解率变化趋势与之相同;而随着ρ(AO7)0(AO7初始质量浓度)的升高,AO7降解率有所下降. 分别投加EA(乙醇)、TBA(叔丁醇)这2种捕获剂来验证体系氧化物种时发现,55 min时AO7降解率分别为79.40%和91.33%,氧化体系的主要氧化物种为·SO4-(硫酸根自由基)和少量·OH(羟基自由基). XRD(X射线衍射)和XPS(X射线光电子能谱)结果显示,Fe-MnOx催化剂中的Fe、Mn主要以Fe3+、Mn2+、Mn4+ 3种形式存在,Fe、Mn、O 3种元素中,Fe3+、Mn2+、Mn4+、O2-和表面羟基氧的摩尔比分别为20.49%、26.46%、5.60%、32.51%和14.91%. 研究显示,Fe-MnOx催化剂具有金属离子溶出量低、催化性能良好等优良性能,能够有效催化PMS生成自由基,对水中的污染物具有良好的降解效果.   相似文献   

19.
该文采用零价钴(ZVCo)活化过一硫酸盐(PMS)降解罗丹明B(RhB)废水,考察了初始p H、ZVCo投加量、PMS用量、常见无机阴离子(如Cl-、SO_4-、SO_4(2-)、NO_3(2-)、NO_3-、HCO_3-、HCO_3-)和天然有机物(NOM)对ZVCo/PMS反应体系的影响;探究了RhB在该体系中的降解机理。实验结果表明,pH为7时,Rh B的降解效率最高,在6 min内其降解效率可达98.5%。Cl-)和天然有机物(NOM)对ZVCo/PMS反应体系的影响;探究了RhB在该体系中的降解机理。实验结果表明,pH为7时,Rh B的降解效率最高,在6 min内其降解效率可达98.5%。Cl-的存在对Rh B的降解有轻微的抑制作用;HCO_3-的存在对Rh B的降解有轻微的抑制作用;HCO_3-和NOM能够较大限度地抑制Rh B的去除;SO_4-和NOM能够较大限度地抑制Rh B的去除;SO_4(2-)和NO_3(2-)和NO_3-几乎无影响。自由基淬灭实验表明羟基自由基(HO-几乎无影响。自由基淬灭实验表明羟基自由基(HO·)和硫酸根自由基(SO_4·)和硫酸根自由基(SO_4(·-))均参与了Rh B的降解过程,且SO_4(·-))均参与了Rh B的降解过程,且SO_4(·-)是该体系中起主要作用的自由基。ZVCo具有良好的稳定性,材料经重复使用4次后对Rh B的降解效率仍高达98.4%。  相似文献   

20.
高级氧化技术是一种以产生羟基自由基(·OH)和硫酸根自由基(SO4?·)来降解环境有机污染物的技术. 近年来,通过活化过一硫酸盐(peroxymonosulfate, PMS)而产生SO4?·的高级氧化技术受到了广泛关注. 与基于·OH的传统高级氧化技术相比,基于SO4?·的高级氧化技术具有氧化还原电位高、半衰期长、适用pH范围广和对污染物反应快速等优点. 本文从活化PMS方法的特点和性质出发,对目前活化PMS技术降解环境有机污染物的主要方法和活化机理进行了论述,活化方法包括过渡金属活化(均相和非均相)、碳质材料活化、碱性活化、热活化、辐射活化、电解活化等,活化PMS的机制是通过活化方法使其分子结构中的O—O键发生断裂,从而使PMS分解形成SO4?·或其他的活性物质. 此外,分析了活化PMS降解环境有机污染物的主要影响因素,其中影响均相系统PMS活化的因素包括过渡金属剂量、pH和水中阴离子等,过量的PMS和过渡金属可能成为SO4?·的抑制剂,pH不仅对氧化剂分解产生自由基起着关键作用,还影响过渡金属种类的形成及其与氧化剂反应的有效性,而水中阴离子会与有机化合物竞争和SO4?·发生反应. 最后,提出未来研究重点应在开发稳定高效活化PMS的金属氧化物、碳质材料,以及使用多种处理技术协同作用上,同时应加强对活化PMS技术降解有机污染物体系的降解产物和毒性分析的研究.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号