首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
利用2019年和2020年夏季沈阳市工业区大气挥发性有机物(VOCs)的观测数据,研究沈阳市夏季工业区大气VOCs的组成特征并初步判断其来源,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)法分别估算该地大气VOCs的臭氧生成潜势(OFP)及二次有机气溶胶生成潜势(AFP).结果表明,观测期间沈阳市工业区ρ(总VOCs)平均值为41.66μg·m-3,烷烃、烯烃、芳香烃和乙炔分别占总VOCs浓度的48.50%、 14.08%、 15.37%和22.05%.浓度排名前10的物种累计占总VOCs浓度的69.25%,其中大部分为C2~C5的烷烃,还包括乙炔、乙烯和部分芳香烃.总VOCs整体上呈现出早晚浓度高、中午浓度低的日变化特征,峰值分别出现在06:00和22:00,11:00~16:00处于较低水平.由甲苯/苯(T/B)和异戊烷/正戊烷的比值判断工业区主要受机动车尾气排放、溶剂使用、燃烧源和LPG/NG的影响.工业区大气VOCs的总AFP为41.43×10-2μg·m-3,其中芳香烃的贡献最大;总OFP贡献值为1...  相似文献   

2.
于2020年8月18~27日在长沙、株洲和湘潭这3市,使用罐采样方法开展了大气挥发性有机物(VOCs)连续采集,并使用GC/FID/MSD分析了106种VOCs物种浓度,开展区域VOCs污染特征、生成潜势和来源解析研究.结果表明,长株潭区域φ(VOCs)平均值为(20.5±10.5)×10-9,其中OVOCs(33.5%)和烷烃(28.2%)所占质量分数较高;VOCs的臭氧生成潜势(OFP)平均值为118.5μg·m-3,芳香烃、烯烃和OVOCs对OFP的贡献率分别为37.4%、 24.2%和23.6%; VOCs的二次有机气溶胶生成潜势(SOAp)平均值为0.5μg·m-3,芳香烃对SOAp的贡献率达97.0%,其中C8类芳香烃贡献率为41.7%,甲苯、间/对-二甲苯和邻-二甲苯是对OFP和SOAp有显著贡献的共同优势物种.特征比值结果表明长沙VOCs受工业过程和溶剂使用影响相对较大,而株洲和湘潭受煤和生物质燃烧影响相对较多;PMF解析结果显示,VOCs...  相似文献   

3.
阮兆元  燕鸥  王体健  王勤耕  罗干  文金科 《环境科学》2023,44(11):5933-5945
为了解南京市溧水区大气挥发性有机物(VOCs)的组分、来源及其对臭氧的贡献,2021年对区域内VOCs开展了为期1 a的走航监测,进行数据分析.结果表明,溧水区ρ(TVOC)年均值为223.45μg·m-3,其中ρ(烷烃)为49.45μg·m-3(占比22.13%),ρ[含氧(氮)VOCs]为50.63μg·m-3(占比22.66%),ρ(卤代烃)为64.73μg·m-3(占比28.95%),ρ(芳香烃)为35.46μg·m-3(占比15.87%),ρ(烯烃)为18.26μg·m-3(占比8.19%),其他为4.9μg·m-3(占比2.2%).夏季的ρ(TVOC)平均值较高,为263.75μg·m-3,冬季较低,为187.2μg·m-3,春季为246.11μg·m-3,秋季为204.77μg·m-3.日均TVOC浓度,在09:00~10:00和14...  相似文献   

4.
孙雪松  张蕊  王裕  聂滕 《环境科学》2023,44(2):691-698
为深入了解挥发性有机物(VOCs)对臭氧(O3)污染的影响,基于北京市2019年秋季VOCs和O3高时间分辨率在线监测数据,开展O3污染情况下VOCs浓度水平、组成变化和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(22.22±10.10)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的55.65%,其次是含氧有机物(OVOCs)和烯烃,分别占总VOCs的16.23%和8.13%.观测期间,北京市城区O3共出现3次污染过程,O3污染日和清洁日φ(VOCs)平均值分别为(26.22±12.52)×10-9和(16.37±7.19)×10-9,污染日VOCs体积分数比清洁日高60.17%.臭氧生成潜势(OFP)分析结果显示,污染日OFP为113.63μg·m-3,比清洁日增加56.55%,OVOCs和芳香烃对OFP的贡献率分别增加6.51%和1.55%,而烯烃的贡献...  相似文献   

5.
为了解天津市PM2.5-O3复合污染特征及来源,基于2017~2019年高时间分辨率PM2.5、 O3和挥发性有机物(VOCs)在线监测数据,对复合污染下天津市VOCs浓度水平、化学组成及O3和二次有机气溶胶(SOA)生成潜势来源进行分析.结果表明,2017~2019年,天津市复合污染日为34 d,分布在每年的3~9月,年度变化呈现稳中略升趋势;小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).复合污染下ρ(VOCs)为72.59μg·m-3,烷烃、芳香烃、烯烃和炔烃质量分数分别为61.51%、 20.38%、 11.54%和6.57%; VOCs中浓度较高的前20种物种的浓度均上升,其中乙烷、正丁烷、异丁烷和异戊烷等烷烃类物种质量分数上升,烯烃和炔烃类质量分数略下降,芳香烃类中的苯和1,2,3-三甲苯质量分数略升....  相似文献   

6.
成都市大气环境VOCs污染特征及其健康风险评价   总被引:8,自引:6,他引:2  
于2012年9月,在成都市分别选取代表城市大气环境和路边大气环境的两个采样点对大气中挥发性有机物(VOCs)进行采样,对不同大气环境中VOCs的浓度水平与变化特征、组成和反应活性进行分析,并对其中的芳香烃化合物进行健康风险评价.结果表明,成都市城市大气环境和路边大气环境中TVOCs的平均质量浓度分别为(108.57±52.43)μg·m~(-3)和(132.61±49.31)μg·m~(-3),不同大气环境中各烃类物质浓度均呈现出烷烃芳香烃烯烃炔烃的趋势;城市和路边大气环境中芳香烃和烯烃对臭氧生成潜势(OFP)贡献较大,关键物种均为间/对二甲苯、甲苯、乙烯、邻二甲苯和丙烯;不同大气环境中的苯、甲苯、乙苯和二甲苯(BTEX)对人体的非致癌风险和危害指数均小于1,对暴露人群不存在非致癌风险;致癌物质苯对人体的致癌风险高于安全阈值1.00E-06,对暴露人群可能存在致癌风险.  相似文献   

7.
加油站油气处理装置是控制埋地油罐油气压力并对油气进行回收处理的装置,测试分析油气处理装置进口和出口挥发性有机物(VOCs)化学组成,利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAP),量化评估其二次污染生成贡献.结果表明:(1)油气处理装置进口和出口ρ(TVOC)分别为436~706 g·m-3和4.98~10.04 g·m-3,VOCs排放主要为烷烃(72%±4%)、含氧有机物(14%±2%)和烯烃(11%±5%).不同处理工艺VOCs排放差异较小,关键物种均为异戊烷(约25%),其次为正丁烷、异丁烷和正戊烷.(2)油气处理装置出口排放的VOCs臭氧生成系数(SR值)为2.6~3.3 g·g-1,OFP为3.5~25.6 g·m-3,其中烯烃对OFP贡献率(43%~69%)最大,其次为烷烃(20%~35%)和含氧有机物(10%~22%),OFP主要贡献物种为丁烯、顺-2-丁烯、反-2-丁烯、异戊烷和丙醛.(3)油气处理装...  相似文献   

8.
利用2021年1~12月杭州市城区大气VOCs的观测数据,分析了VOCs化学组成及其污染特征,运用正交矩阵因子分解法(PMF)进行VOCs来源解析,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(AFP),量化评估其二次污染生成贡献.结果显示,观测期间杭州市大气VOCs体积分数均值为30.65×10-9,烷烃和卤代烃是其主要组分,分别占49.23%和24.47%,浓度排名前10的VOCs物种主要为C2~C4的烷烃、C7~C8的芳香烃和乙烯.源解析结果显示杭州市VOCs主要来源为燃烧源、溶剂使用源、工业排放源、油气挥发源和机动车尾气排放源.杭州市大气VOCs的总OFP为50.56×10-9,其中乙烯、1-乙基-3-甲基苯和甲苯是其主要贡献组分.芳香烃对AFP的贡献达到91.52%,是最重要的SOA前体物.因此,控制机动车尾气排放和溶剂使用过程中产生的VOCs对防控O3  相似文献   

9.
利用挥发性有机物(VOCs)在线监测数据对新冠肺炎疫情(COVID-19)期间(2019年12月25日~2020年2月24日)雄安地区环境空气中VOCs进行监测,探讨了疫情防控前、后VOCs的变化特征、臭氧生成潜势及来源解析.结果表明,疫情防控后φ(TVOCs)平均值为45.1×10-9,约为疫情防控前φ(TVOCs)90.5×10-9的一半,芳香烃、卤代烃和OVOCs体积分数下降幅度超过60%.VOCs构成发生了较大变化,烷烃贡献率由37.6%增加至53.8%,芳香烃和卤代烃贡献率由13.3%和12.0%降低为7.5%和7.8%.疫情防控前、后体积分数前10物种有7种相同,主要为低碳烷烃、烯烃和醛酮类.疫情防控后二氯甲烷和三氯甲烷等卤代烃及苯系物下降幅度超过70%,具有机动车尾气示踪作用的甲基叔丁基醚体积分数下降超过60%.疫情防控前、后OFP分别为566μg·m-3和231μg·m-3,疫情防控后各类VOCs的OFP下降幅度均大于30%.芳香烃OFP贡献率在疫情防控后明显下降;疫情管控前、后烯炔...  相似文献   

10.
臭氧已成为影响我国环境空气质量的重要污染物之一,准确解析环境臭氧及其前体物VOCs的关键源类及其贡献对于有效防控臭氧污染具有重要作用.因此,利用光化学年龄参数方法估算了青岛胶州市2021年1月1日至2月28日在线VOCs监测数据的初始浓度,矫正环境VOCs物种的光化学损耗;并利用正定矩阵因子分解(PMF)和臭氧生成潜势(OFP)模型进行了环境VOCs及其OFP来源解析研究,以期为青岛市环境臭氧污染的防控提供数据支撑.结果表明,研究期间青岛市环境ρ(TVOCs)和OFP的平均值分别为65.9μg·m-3和176.7μg·m-3;其中丙烷浓度(12.4μg·m-3)和占比(18.9%)最高,而间/对-二甲苯的OFP(24.6μg·m-3)及占比(13.9%)最高.研究期间TVOCs的初始浓度为153.1μg·m-3,其光化学损耗率达到63.8%.烯烃是光化学损耗率(92.1%)最高的VOCs物种,其中异戊二烯的光化学损耗率达到98.6%,明显高于其它VOCs物种.基于初始浓度的来源...  相似文献   

11.
基于聊城市2021年6月挥发性有机物(VOCs)和臭氧(O3)在线监测数据,系统分析了O3污染日和清洁日VOCs的浓度水平、组成特征、日变化特征和O3生成潜势(OFP),通过潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)识别了VOCs的潜在源区,利用特征物种比值和正定矩阵因子分解(PMF)模型对VOCs来源进行了解析.结果表明,聊城市2021年6月O3污染日和清洁日ρ(VOCs)小时均值分别为(115.38±59.12)μg·m-3和(88.10±33.04)μg·m-3,各类别VOCs浓度水平在污染日和清洁日的大小均表现为:含氧挥发性有机物(OVOCs)>烷烃>卤代烃>芳香烃>烯烃>炔烃>有机硫.污染日和清洁日浓度差值较大的VOCs物种均出现在二者VOCs浓度小时均值贡献前10物种中.总VOCs、烷烃、炔烃、芳香烃、卤代烃和有机硫浓度日变化趋势表现为日间低于夜间,OVOCs浓度日变化呈现出白天高,夜间低的特...  相似文献   

12.
为研究城区及背景点夏季挥发性有机物(VOCs)污染特征的差异,于2020年7月在淄博市城区站点和背景站点在线监测环境VOCs,分析其污染特征和化学反应活性,运用正交矩阵因子分析模型(PMF)解析VOCs的来源.结果表明,城区点ρ(TVOC)和ρ(NOx)高于背景点,但ρ(O3)较低;城区点ρ(TVOC)和ρ(NOx)呈夜间高白天低的日变化特征,背景点无明显变化特征,二者ρ(O3)日变化特征一致,呈夜间低白天高,但背景点峰值晚于城区.城区点和背景点ρ(TVOC)均值分别为(44.9±27.5)μg·m-3和(17.3±9.1)μg·m-3,各组分质量分数均为:烷烃>芳香烃>烯烃>炔烃;臭氧生成潜势(OFP)均值分别为(115.5±63.1)μg·m-3和(38.0±20.2)μg·m-3,各组分贡献率均为:烯烃>芳香烃>烷烃>炔烃;·OH消耗速率(L·OH)...  相似文献   

13.
焦化厂因其工艺特殊,SO2、NOx、颗粒物及VOCs的排放问题较为突出。故对焦化厂厂界环境空气VOCs排放特征进行分析,并依据最大增量反应活性(MIR)法和等效丙烯浓度(PEC)法对VOCs的臭氧生成潜势(OFP)进行评估,依据气溶胶生成系数(FAC)法对VOCs二次有机气溶胶生成潜势(SOAFP)进行评估。结果表明:1)厂界上、下风向5个点位共分析出包括芳香烃、卤代烃、烯烃、硫化物、酮类在内的17种VOCs; 2)不同区域厂界检出的VOCs差异显著,总质量浓度为28.2~167.9μg/m3,其中芳香烃在各点位TVOCs中占比最大,达到51.01%~84.63%;3)脱硫提盐冷鼓区域边界OFP最大,理论值为335.51μg/m3,办公生活区边界OFP最小,理论值为47.06μg/m3,芳香烃对OFP贡献率为27.21%~62.37%,烯烃为39.17%~61.84%,卤代烃为2.08%~14.56%;通过PEC法估算OFP,结果变化趋势与MIR法结果相一致,等效丙烯浓度为3.11~31.89μg/m3;且1—5点位芳香烃的等效丙烯浓度贡献率分别为37.10%、51.46%、66.79%、58.80%和22.74%;4)1—5点位SOAFP分别为0.452,0.938,2.517,4.055,0.495μg/m3;芳香烃对SOAFP贡献最大。丙烯、甲苯、二甲苯、氯乙烯等质量浓度和反应活性均较大的物质,是需要优先控制的VOCs组分,可作为焦化厂环境空气VOCs的标志物。  相似文献   

14.
郑州市春季大气挥发性有机物污染特征及源解析   总被引:2,自引:10,他引:2  
对2018年春季郑州市5点位进行环境大气挥发性有机物(VOCs)罐采样及组分分析,开展其污染特征、臭氧生成潜势(OFP)、气溶胶生成潜势(AFP)和来源解析研究.结果表明,郑州市春季VOCs体积分数为(30. 66±13. 60)×10-9,烷烃占比最高(35. 3%),其次为OVOCs(25. 3%)、卤代烃(24. 1%)、芳香烃(10. 0%)和烯烃(5. 2%);总OFP为195. 53μg·m-3,烷烃、烯烃、芳香烃、卤代烃和OVOCs贡献率分别为25. 6%、17. 8%、38. 9%、5. 8%和11. 9%;总AFP为0. 95μg·m-3,芳香烃贡献率最高(87. 6%),其次为烷烃(12. 4%);秦岭路和经开区点位正戊烷、异戊烷、苯和甲苯受机动车影响较大,郑州大学点位主要受燃烧源影响;源解析显示机动车尾气及LPG挥发、溶剂使用源、工业过程源、区域老化气团和植物源对采样期间VOCs浓度贡献依次是30. 5%、27. 3%、22. 1%、14. 4%和5. 7%.  相似文献   

15.
郑州市多站点大气VOCs变化特征及源解析   总被引:1,自引:1,他引:0  
于2020年7月至2021年6月,在郑州市3个城市站点和1个郊区站点开展逐月大气VOCs离线样品采样及实验室分析,探讨郑州市大气VOCs体积分数水平、组成特征、反应活性和来源贡献.结果表明,观测期间,郑州市大气φ(VOCs)为(37.50±14.30)×10-9,组分占比为:烷烃(33%)>OVOCs(24%)>卤代烃(23%)>芳香烃(8%)>烯烃(7%)>炔烃(4%)>硫化物(1%).季节变化表现为:冬季>秋季>夏季>春季,VOCs月均值在1月出现最高值,5月出现最低值,空间变化则表现为:郑州大学>市监测站>经开区管委>岗李水库.采样周期·OH消耗速率(L·OH)均值为4.24 s-1,臭氧生成潜势(OFP)均值为172.27μg·m-3,各站点和各季节L·OH和OFP贡献率前10位物种均以烯烃、 OVOCs和芳香烃为主.正交矩阵因子分解模型(PMF)结果显示,VOCs主要来源为机动车排放(28%)、溶...  相似文献   

16.
张蕊  孙雪松  王裕  王飞  罗志云 《环境科学》2023,44(4):1954-1961
为深入了解臭氧(O3)污染高发季节大气挥发性有机物(VOCs)对O3生成的影响,基于北京市2019年夏季VOCs和O3高时间分辨率在线监测数据,开展VOCs变化规律、组成特征和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(25.12±10.11)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的40.41%,其次是含氧有机物(OVOCs)和烯/炔烃,分别占总VOCs的25.28%和12.90%. VOCs体积分数日变化呈双峰型,早高峰出现在06:00~08:00,烯/炔烃占比明显增加,表明机动车排放对VOCs贡献显著,而午后VOCs体积分数降低,期间OVOCs占比呈现上升趋势,下午的光化学反应和气象要素对VOCs体积分数和组成影响较大.北京市城区夏季OFP为154.64μg·m-3,贡献率较高的组分是芳香烃、 OVOCs和烯/炔烃,正己醛、乙烯和间/对-二甲苯等是关键活性物种,削减机动车、溶剂使用和餐饮源排放是北京市城区夏季控制O3  相似文献   

17.
于2020年9~10月在深圳北部典型工业区开展在线观测以分析该地VOCs污染状况,并使用基于观测的模型(OBM)研究臭氧生成敏感性.观测期间VOCs的总浓度为48.5×10-9,浓度水平上烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈.臭氧生成潜势(OFP)为320μg/m3,其中芳香烃、OVOCs以及烷烃贡献最大,这3类物种OFP贡献总和超过90%.乙烯与苯呈现“两峰一谷”的日变化特征,主要受到机动车排放的贡献.相对增量反应性(RIR)分析表明,削减人为源VOCs对控制当地臭氧生成最为有效,当中又应优先控制芳香烃;经典动力学曲线(EKMA)分析表明该片区臭氧生成处于过渡区,在开展VOCs区域联防联控的同时,需要在当地进行有力的NOx控制以强化该地区臭氧污染长期管控.  相似文献   

18.
武汉市夏季大气挥发性有机物实时组成及来源   总被引:1,自引:1,他引:0  
利用在线监测仪器获取了武汉市2019年6~7月环境大气中102种挥发性有机物(VOCs)小时浓度数据.观测期间ρ(VOCs)范围为24.9~254μg·m-3,平均值为(67.7±32.2)μg·m-3.依据臭氧浓度标准,将观测期间划分为清洁日和污染日,对比分析清洁日和污染日气象条件、 VOCs浓度、组成、臭氧生成潜势和来源差异.污染日NOx、 CO和VOCs的平均值分别超出清洁日34.9%、 25.0%和27.8%.污染日烷烃、烯烃、芳香烃和含氧VOCs分别比清洁日高40.7%、 39.5%、 26.9%和21.5%.污染日总臭氧生成潜势为(102±69.6)μg·m-3,超出清洁天33.5%.污染日液化石油气燃烧、工业排放、机动车排放、天然源和溶剂使用的平均贡献率分别比清洁日低3.4%、 2.5%、 0.2%、 1.3%和1.4%,油气挥发源平均贡献率比清洁日高8.8%.机动车排放源和油气挥发源的日变化均呈现早晚高、午后低的特征,与早晚高峰排放有关;LPG燃烧的日变化与餐饮油烟排放变化一致.浓度...  相似文献   

19.
选取2家典型农药制造企业为研究对象,探究农药制造行业废气排放特征、环境影响和人体健康风险.结果表明,不同企业由于产品、生产环节的不同产生的污染物存在一定差异,A企业污染物以氨、含氧有机物和卤代烃为主,B企业污染物以卤代烃为主.臭氧生成潜势(OFP)范围在1.96~107.24 mg·m-3之间,二次有机气溶胶生成潜势(SOAFP)范围为0.94~74.72 mg·m-3,对OFP和SOAFP贡献较大为含氧有机物、芳香烃和卤代烃.农药企业恶臭物质较为复杂,主要恶臭物质涵盖了硫化物、含氧有机物、含氮化合物和芳香烃.农药企业所有排气筒废气的LCR均高于10-6,存在一定的致癌风险,A企业LCR范围为4.10×10-6~5.34×10-3之间,B企业LCR范围在1.23×10-3~4.35×10-1之间,卤代烃,特别是1,2-二氯乙烷是农药企业主要的致癌风险物质,需要企业加以重视.  相似文献   

20.
2018年8月采集太原市大气样品,分析太原市夏季大气VOCs的污染特征,并利用最大增量反应活性系数法(MIR系数法)估算了VOCs的臭氧生成潜势(OFP).结果表明,太原市夏季大气VOCs浓度为17.36~89.60μg/m3,其中烷烃占比58.01%、芳香烃占比20.06%、烯烃占比16.52%、炔烃占比5.40%.大气VOCs浓度变化表现为明显的早晚双高峰特征,且以早高峰影响为主.OFP分析显示,烷烃、烯烃、芳香烃、炔烃分别占总OFP的19.16%、47.74%、31.75%、1.35%,C3~C5类烯烃是活性较高的物种,对O3生成贡献较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号