首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
DMPP对氮素垂直迁移转化及淋溶损失的影响   总被引:10,自引:0,他引:10  
采用自制模拟原状土柱装置,进行新型硝化抑制剂3,4-二甲基吡唑磷酸盐(3,4-dimethyl pyrazole phosphate ,DMPP)对氮素淋溶效应试验,探讨其对氮素垂直迁移转化及降低淋溶损失的影响.结果表明,尿素添加1%的DMPP后,与不添加DMPP尿素相比,在60 d内能有效抑制土壤铵氧化反应的发生,显著提高20 cm以上耕作层土壤水铵态氮的浓度,降低硝态氮和亚硝态氮的浓度;20 cm以下深层土壤水铵态氮的浓度与未加DMPP的处理无显著差异,并没有明显导致铵态氮的垂直迁移;深层土壤水硝态氮的浓度显著低于未加DMPP的处理,明显降低硝态氮垂直迁移的淋溶损失;随施氮量增加,添加DMPP尿素的处理,60 d内土壤水中铵态氮与硝态氮的浓度在40 cm以下深层剖面并没有明显增加,其垂直迁移的淋溶损失差别不大.常规尿素添加1%的DMPP,可以调控土壤氮素的迁移转化,有利于土水环境的保护,降低对地下水氮素污染的潜在风险,具有显著的生态效益.  相似文献   

2.
红壤坡耕地氮磷淋溶不仅造成土壤肥力的下降,而且已成为农业面源污染的重要来源。该研究通过室内土柱淋溶试验,采用间歇淋溶法研究坡耕地裸露红壤和稻草秸秆覆盖红壤2种处理下氮素与磷素的淋溶特征。结果表明:对氮素而言,无论是8次间歇淋溶还是单次淋溶过程,总氮及硝态氮、铵态氮、有机氮等各形态氮素浓度总体均呈现减小的趋势,在淋溶初期无论有无覆盖土壤的淋溶液中总氮浓度都很高(在20 mg/L左右),硝态氮是氮素淋溶的主要形态(有无覆盖分别占68.3%和67.9%);对磷素而言,淋溶液中总磷浓度均很低(在0.1 mg/L以下),且在淋溶过程中其浓度大小呈波动状态;与裸露红壤相比,秸秆覆盖处理下淋溶液的总氮和总磷累积量分别可减少19.4%和23.3%,秸秆覆盖措施能够抑制红壤坡耕地氮磷的淋溶。该研究可为减少红壤坡耕地氮磷损失,防控面源污染提供参考。  相似文献   

3.
生物炭对土壤氮素淋失的抑制作用   总被引:33,自引:0,他引:33  
淋洗作用是土壤氮肥损失途径之一,也是环境水体氮素污染的重要途径。研发降低土壤氮素淋失的技术途径不仅有助于提高氮肥利用率和降低化肥的施用量,而且有助于防治水体污染和改善生态环境。本文通过淋滤实验研究了生物炭对我国两种重要土壤类型黒钙土和紫色土氮素淋失的影响。由玉米秸秆制成的生物炭按10 t/ha,50 t/ha,100 t/ha的比例施用于土壤,同时模拟田间尿素施用量240 kg.N/ha并用相当于每天10 mm的降水量用去离子水淋洗土壤。对淋滤液氮素组成和含量分析结果显示,在不施用生物炭的条件下,黒钙土和紫色土总氮的淋失量分别占土壤(土壤+尿素)总氮含量的7.5%和9.0%,氮素的淋失主要发生在前130 mm降水过程中,其淋失量占全部淋失量的96%。在淋失的成分中,除硝态氮外,有机氮也是重要的组成物质,二者均占淋失总氮量的48%。生物炭的施用可以大幅度地降低氮素的淋失作用。50 t/ha和100t/ha的生物炭施用量降低黑钙土氮素淋失分别为29%和74%,减少紫色土氮素淋失分别达41%和78%。但10 t/ha的生物炭施用量却增加黒钙土和紫色土氮素淋失量分别达到22%和2%。这表明较低的生物炭施用量会促进氮素的淋失。生物炭对有机氮淋失的抑制作用大于硝态氮。100 t/ha的生物炭施用量对有机氮和硝态氮淋失的降低率分别为88%和62%左右,因土壤类型不同而有所差异。上述研究结果为寻求防治土壤氮素淋失的技术方法提供了理论依据。  相似文献   

4.
罗萌  宋娇艳  曾微  王强 《地球与环境》2017,45(5):531-539
采用土柱淋溶试验方法,研究了模拟江水淋溶下,三峡库区典型土壤-紫色土中的有机污染物邻苯二甲酸二甲酯(DMP)的淋溶释放机制及其影响因素。结果表明,随着淋溶时间的延长,不同DMP含量水平的紫色土中DMP的累积释放量均增加,双常数方程是描述紫色土中DMP淋溶释放动力学的最佳方程;随着紫色土中DMP含量增加,紫色土向模拟江水淋溶释放DMP的累积量越多,但是累积释放率却减小,累积释放率仅0.58%~1.35%,表明紫色土中的DMP不易淋溶释放。离子强度对DMP的释放量影响显著,在试验离子强度范围内,累积释放率总体上较低,介于0.43%~0.74%;试验p H范围内,紫色土中DMP累积释放量、累积释放率与淋滤液p H呈极显著负相关;紫色土中外源有机质的添加显著增加了紫色土对DMP的吸持量,减小了紫色土中DMP的淋溶释放量;当紫色土中表面活性剂十二烷基苯磺酸钠(SDBS)添加量为50 mg/kg时,降低了紫色土中DMP的累积释放量和累积释放率,而当SDBS添加量大于200 mg/kg时,紫色土中DMP的累积释放量和累积释放率反而随着SDBS投加量的增加而增加,并且均高于对照。  相似文献   

5.
有机-无机肥配施对紫色土坡耕地氮素淋失的影响   总被引:13,自引:0,他引:13  
通过坡地渗漏小区定位试验,研究总施氮量相同情况下,施肥方式对紫色土坡耕地氮素淋失的影响.结果表明,有机-无机肥配施会影响紫色土硝酸盐向下累积过程,显著降低紫色土坡耕地硝酸盐累积量.渗漏液中硝态氮含量在0.15~46.99mg·L-1之间,占总氮含量的66.4%~96.3%;总氮淋失量在(4.05±0.37)~(37.82±0.86)kg.hm-2之间,占当季施氮量的2.7%~25.2%.在维持总施氮量相同的条件下,与常规氮磷钾施肥相比,农家肥、秸秆与化肥配合施用的渗漏液总氮含量分别降低了71.0%、61.4%,总氮淋失量分别降低了48.1%、31.6%.这表明有机-无机肥配施能显著降低紫色土坡耕地氮素淋失量,对有效控制紫色土区浅层地下水硝酸盐污染具有重要作用.  相似文献   

6.
三峡库区柑橘园施肥量对土壤氮淋失及残留量的影响   总被引:3,自引:0,他引:3  
本试验以三峡库区秭归县生态站所在流域内的柑橘园土壤作为研究对象,通过0~20、0~40、0~60 cm深度的原状土柱淋溶试验对不同施肥量对柑橘园土壤中氮素淋失及残留量的影响进行研究.试验中设置4种施肥处理,为不施肥处理(CK)、低氮施肥处理(T1:250 kg·hm~(-2))、中氮施肥处理(T2:500 kg·hm~(-2))、高氮施肥处理(T3:750 kg·hm~(-2)).结果表明:①柑橘园土壤中氮素淋失的主要形态为硝态氮(NO_3~--N),占总氮(TN)淋失量的36. 93%~60. 07%,铵态氮(NH_4~+-N)的比例为4. 40%~5. 79%.土壤中NO_3~--N残留量占TN残留量的比例为11. 31‰~45. 66‰,NH_4~+-N残留量的比例为1. 05‰~2. 07‰;②相同深度的柑橘园土壤中,氮素的淋失量和残留量与施肥量呈显著正相关.不同施肥量下土壤中TN的淋失量和残留量分别为11. 35~30. 11 kg·hm~(-2)和0. 30~1. 86 g·kg~(-1).其中,NO_3~--N和NH_4~+-N的淋失量占TN淋失量的比例在T2处理下达到峰值,NO_3~--N和NH_4~+-N的残留量占TN残留量比例峰值分别出现在T1和T2处理;③相同施肥量下,土壤中氮素不同形态的淋失量和残留量受土壤深度影响的差异较大.施肥后,NO_3~--N淋失量和残留量的峰值分别出现在20cm和40 cm深度,NH_4~+-N淋失量和残留量的峰值主要出现在20 cm深度.从试验中的结果推论,0~40 cm土柱中的中氮处理更有利于肥料氮向无机态氮转化以供植物吸收并降低施肥后氮素淋失的风险.  相似文献   

7.
生物炭添加比例及冻融对沟渠土壤氮素淋失的影响   总被引:1,自引:0,他引:1  
三江平原大规模集约化农业生产活动破坏了土壤养分平衡,加快了营养物质输移过程,而沟渠土壤中高有机物含量有利于营养元素的化学循环.为了研究冻融过程及添加不同比例生物炭对沟渠土壤氮素淋失的影响效果,本研究采用室内土柱模拟淋溶方法,探究了冻融过程及添加不同比例生物炭土壤对淋溶液中铵态氮(NH~+_4-N)和硝态氮(NO~-_3-N)淋失量的影响规律.实验采用400℃烧制的玉米秸秆生物炭,分别按照炭土质量比0、0.75%、1.50%、3.00%的比例施用于沟渠土壤中.结果表明:施加生物炭加快了溶液的淋溶速率;施加生物炭能够增加土壤对氮素的固持,且不同配比生物炭的土壤对铵态氮的固持能力优于硝态氮,添加0.75%生物炭的土壤对硝态氮表现出较好的固持能力;冻融条件下土壤氮素的淋失有所增加,生物炭对氮素的固持能力随着冻融次数的增加也有所降低,在本实验中,当冻融频次为1时,冻融过程对生物炭固持土壤氮素能力的抵消作用最大.  相似文献   

8.
本试验以三峡库区秭归县生态站所在流域内的柑橘园土壤作为研究对象,通过0~20、0~40、0~60cm深度的原状土柱淋溶试验对不同施肥量对柑橘园土壤中氮素淋失及残留量的影响进行研究。试验中设置4种施肥处理,为不施肥处理(CK)、低氮施肥处理(T1:250kg·hm-2)、中氮施肥处理(T2:500kg·hm-2)、高氮施肥处理(T3:750kg·hm-2)。结果表明:(1)柑橘园土壤中氮素淋失的主要形态为硝态氮(NO3--N),占总氮(TN)淋失量的36.93%~60.07%,铵态氮(NH4+-N)的比例为4.40%~5.79%。土壤中NO3--N残留量占TN残留量的比例为11.31~45.66‰,NH4+-N残留量的比例为11.31~45.66‰;(2)相同深度的柑橘园土壤中,氮素的淋失量和残留量与施肥量呈显著正相关。不同施肥量下土壤中TN的淋失量和残留量分别为11.35~30.11 kg·hm-2和0.30~1.86 g·kg-1。其中,NO3--N和NH4+-N的淋失量占TN淋失量的比例在T2处理下达到峰值,NO3--N和NH4+-N的残留量占TN残留量比例峰值分别出现在T1和T2处理;(3)相同施肥量下,土壤中氮素不同形态的淋失量和残留量受土壤深度影响的差异较大。施肥后,NO3--N淋失量和残留量的峰值分别出现在20cm和40cm深度,NH4+-N淋失量和残留量的峰值主要出现在20cm深度。从试验中的结果推论,0~40cm土柱中的中氮处理更有利于肥料氮向无机态氮转化以供植物吸收并降低施肥后氮素淋失的风险。  相似文献   

9.
粮食需求日益增加,为了实现增产,大量氮肥被施入土壤,而氮肥利用率较低导致土壤氮淋失严重,造成水体污染. 生物炭施入土壤被认为是减少土壤氮淋失的有效措施. 本文通过室内土柱模拟淋溶试验,共设置5个处理——对照(仅施氮肥,B0)、氮肥+1%新鲜生物炭(B1)、氮肥+4%新鲜生物炭(B4)、氮肥+1%老化生物炭(Ba1)、氮肥+4%老化生物炭(Ba4). 在植物-土壤-淋溶液系统内探究不同施加量的新鲜和老化生物炭对土壤氮淋失和油菜氮吸收的影响,并通过物质守恒定律来探究其对气态氮损失的影响. 结果表明:与对照相比,添加1%和4%新鲜生物炭时土壤氮素含量分别提高4.63%和9.68%,淋溶液氮素含量分别降低33.91%和61.18%,油菜氮素含量分别增加40.70%和129.65%;添加1%和4%老化生物炭时土壤氮素含量分别提高7.46%和13.30%,淋溶液氮素含量分别降低53.68%和72.05%,油菜氮素含量分别增加78.20%和185.76%;气态损失的氮量随生物炭老化和施加量的增加而减少. 研究显示,土壤中施加生物炭对于提高土壤氮素固持能力、减少氮素淋失、促进油菜氮吸收和减少气态氮损失均具有显著效果,且施加老化生物炭的促进效果优于新鲜生物炭,证明生物炭减少土壤氮淋失的效应具有长期性.   相似文献   

10.
小麦-玉米轮作体系农田氮素淋失特征及氮素表观平衡   总被引:3,自引:0,他引:3  
连续6年采用渗漏计法研究了不同施氮处理下陕西关中小麦-玉米轮作区农田土壤90 cm深度处氮素(N)淋失特征和土壤-作物体系氮素表观平衡状况.结果表明:该地区农田氮素淋溶主要发生在降雨量较多的玉米季,且集中在8月和9月.监测期内,TN和NO-3-N年平均流失量分别为2.72~23.07 kg·hm-2和1.53~18.72 kg·hm-2,年流失率分别为0.65%~3.44%和0.82%~3.32%,且年总氮、硝态氮流失量均随年施氮量增加呈指数增加.氮素淋失形态中,NO-3-N比例较高,可占总氮淋失量的56.00%~81.00%,且随着氮肥用量的降低,其占总氮淋失量的比例也随之减小.可见,施氮量的大小在一定程度上会影响淋失液中各形态氮的比例.氮素表观平衡结果显示,随着施氮量提高,氮素在土壤中的残留和表观氮盈余均呈现指数增加趋势.长期施氮条件下,土壤-作物体系氮素表观损失率的幅度为32.60%~55.20%,土壤表观残留率为-0.17%~8.20%.多年监测结果表明,优化施氮模式下,作物不仅可以获得较高的产量和氮肥利用率,农田氮素淋失量也大幅降低,在节约肥料资源的同时减轻了潜在的环境风险.  相似文献   

11.
丹江口库区覆膜耕作土壤氮素淋失随夏玉米生长期的变化   总被引:4,自引:1,他引:3  
王伟  于兴修  汉强  刘航  徐苗苗  任瑞  张家鹏 《环境科学》2016,37(11):4212-4219
土壤氮素淋失是农业非点源污染的重要形式,也是水源地水质恶化的重要原因.以丹江口库区五龙池小流域为研究区,以农田黄棕壤种植夏玉米为例进行田间氮素淋失实验,通过与无覆膜耕作进行对比,研究覆膜耕作条件下土壤氮素淋失随玉米生长期的变化.结果表明,覆膜耕作土壤TN和NO_3~--N淋失量均明显低于无覆膜耕作,分别低25.68%和20.25%.夏玉米生长期内,覆膜土壤TN淋失量表现为苗期最高,拔节期和抽穗期显著降低,成熟期略微升高的变化趋势;覆膜土壤NO_3~--N淋失量表现为在苗期最高,拔节期显著降低,随后缓慢降低的变化过程;覆膜土壤NH_4~+-N淋失量表现为在苗期较低,拔节期升至峰值,抽穗期降至谷值,成熟期显著升高的变化特征.覆膜土壤TN和NO_3~--N淋失量分别与土壤中TN和NO_3~--N含量之间呈线性函数和指数函数关系;与土壤含水量和降雨量之间呈线性函数关系.上述结果表明,覆膜能降低土壤中氮素的淋失量,将对减少库区农业非点源污染具有明显的作用.  相似文献   

12.
有机物料对两种紫色土氮素矿化的影响   总被引:2,自引:0,他引:2  
张名豪  卢吉文  赵秀兰 《环境科学》2016,37(6):2291-2297
以猪粪沼渣(PM)、牛粪沼渣(CM)、污泥堆肥(SC)、农村生活垃圾堆肥(RWC1)、农村生活垃圾与污泥的堆肥产物(堆肥过程中添加20%的污泥,RWC2)为材料,采用室内恒温好气培养试验研究了不同有机物料施入酸性紫色土和石灰性紫色土后土壤氮矿化的差异.结果表明,不同有机物料有机氮组分含量及其占全氮比例的基本顺序为:氨基酸态氮酸解未知氮酸解铵态氮非酸解氮氨基糖态氮.添加有机物料显著提高了酸性紫色土的NH~+_4-N和NO~-_3-N含量,而石灰性紫色土中猪粪沼渣和污泥堆肥显著提高了NH~+_4-N的含量,牛粪沼渣却使其NO~-_3-N含量降低.牛粪沼渣对酸性紫色土氮矿化量的影响不显著,使石灰性紫色土的氮矿化量降低,其余4种有机物料均明显提高两种土壤的氮矿化量.相关分析表明土壤氮矿化量与有机物料中的氨基酸态氮和酸解铵态氮呈显著正相关,与有机物料的有机质含量和C/N呈显著负相关.上述结果说明有机物料对土壤氮素矿化的效应因土壤和有机物料的性质不同而异,特别是有机物料中的有机质含量、C/N以及有机氮组分.  相似文献   

13.
采用盆栽种植实验及淋溶试验方法,研究了纳米碳及其与沸石、保水剂等材料复合对油菜生长和土壤氮素淋溶情况的影响.结果表明,在各处理中,纳米碳与沸石和保水剂复合材料处理(N4)对油菜的株高和干重影响最明显,较空白对照组(CK)分别增加21.12%和16.51%;在土壤淋溶试验中,各处理的土壤总氮淋出量较CK减少25.00%~39.21%,其中,累积淋溶中NH+4-N量占总氮量的4.44%~6.73%,各处理间无显著差异,NO-3-N量占总氮量的49.33%~60.05%,但各处理间差异显著;纳米碳和沸石复合处理能有效延缓NO-3-N峰值出现时间,减少NO-3-N流失.因此,N4处理在促进作物生长和氮素保持增效利用方面效果最佳.  相似文献   

14.
紫色土旱坡地氮流失通量对减肥配施秸秆的响应   总被引:7,自引:3,他引:4  
紫色土旱坡地被认为是三峡库区泥沙和面源污染的主要来源地,加强对紫色土旱坡地壤中流和地表径流中氮流失特征的研究,对防控三峡库区的面源污染有重要的现实意义.依托中科院成都山地所忠县石宝寨试验站的紫色土旱坡地定位径流小区,设置不施肥(CK)、常规施肥(T1)、优化施肥(T2)和减肥配施秸秆(T3)这4种不同的处理,通过监测在油菜-玉米轮作制度下紫色土旱坡地壤中流和地表径流的流失通量、各次径流不同氮形态的流失浓度和流失通量,研究紫色土旱坡地氮流失通量对减肥配施秸秆的响应.结果表明,壤中流径流量占总径流量的比例达到60.14%~88.56%,壤中流氮流失通量占全氮流失通量的72.88%~92.35%.铵态氮主要通过地表径流的方式流失,硝态氮主要通过壤中流的方式流失且是氮流失的主要形态.不同处理的铵态氮和硝态氮流失通量均呈现出T1 > T2 > T3 > CK,T3处理的氮流失通量为20.07 kg·(hm2·a)-1,较T1和T2分别下降了43.59%和39.55%.减肥配施秸秆显著降低了紫色土旱坡地铵态氮、硝态氮和全氮的流失通量,对紫色土旱坡地雨季径流中氮流失有显著的消减效应.  相似文献   

15.
紫色土坡耕地氮淋溶过程及其环境健康效应   总被引:11,自引:8,他引:3  
本研究通过观测3场不同降雨强度及不同施肥方式处理下氮素随紫色土坡耕地的壤中流迁移过程,并对氮素淋溶效应的环境健康效应进行风险评价,进而为控制紫色土地区氮素非点源污染及建立合理施肥制度提供科学依据.结果表明,不同降雨强度下,氮素随壤中流输出形态差异较大,溶解态氮(DN)的比重为53.74%~99.21%,其中硝酸盐(NO-3-N)的比重约为35.70%~93.65%,而在中雨强度下硝酸盐比重高达84.09%~93.65%;对于不同降雨强度,中雨强度下(降雨量为24.7mm)壤中流各形态氮素输出通量最高,总氮(TN)、DN、颗粒态氮(PN)、铵态氮(NH+4-N)和亚硝态氮(NO-2-N)输出通量分别可高达737.17、711.12、26.06、12.70和0.46 mg·m-2,而NO-3-N输出通量可高达686.12 mg·m-2,对地下水环境存在巨大污染隐患.通过对地下水氮素进行污染风险评价,表明秸秆还田能够有效缓解施肥带来的氮淋溶效应,降低地下水氮素污染风险,特别是有机-无机肥配施能有效减缓地下水污染状况,达到改善土壤肥力从而增加农作物产量的目的.  相似文献   

16.
为探究长期平衡施肥和秸秆覆盖对紫色土坡耕地土壤养分及其化学计量比的影响,以垫江县长期农田氮磷流失监测点为研究样地,设置3个处理:常规模式(CK)、平衡施肥模式(M1)和平衡施肥+秸秆覆盖模式(M2),每个处理各设3个重复,共建立9个小区(长7 m×宽3 m),并于2018、2019和2020年采集土样,研究不同处理下碳(C)、氮(N)、磷(P)和钾(K)含量及其化学计量变化特征.结果表明,2018年不同处理之间K含量差异显著,大小顺序为:CK>M2>M1;2019年不同处理之间硝态氮(NO3--N)、铵态氮(NH4+-N)含量差异显著,表现为:M1>M2>CK;其他养分含量在同一年份不同处理之间差异均不显著.不同年份间各处理的土壤C和N含量差异不显著.2018年各处理中K含量均显著高于其他年份,其中,2018年的CK、M1和M2分别比2019年和2020年高78.26%和98.79%,19.13%和35.4%,54.49%和41.76%.P含量在CK和M2处理中均随着年份增大而减小,且2018年分别比2019年高20.29%和10.67%,比2020年高39.68%和17.33%.各处理不同年份间速效钾(AK)含量无显著差异,而NO3--N和NH4+-N和速效磷(AP)含量差异显著,且均在2020年最高.土壤C :P、C :K、N :P、N :K和P :K在不同年份间都表现出显著差异(P<0.05).土壤C :K、N :K和AN :AP分别于2018年和2019年在不同施肥模式间差异显著(P<0.05).土壤C与N及P与K之间呈显著的线性正相关;土壤C :K与C :P、N :K、N :P和P :K之间,N :K与C :P、P :K和N :P之间,N :P与C :P之间都呈显著的线性正相关;土壤P与C :K和N :K之间呈显著的线性负相关.土壤NO3--N与NH4+-N、AN :AP和AN :AK之间,NH4+-N与AN :AP和AN :AK之间,AP与AK和AP :AK之间,AN :AP与AN :AK之间都呈极显著正相关.研究发现平衡施肥+秸秆覆盖是紫色土坡耕地较为适宜的管理模式.  相似文献   

17.
苏永中  杨晓  杨荣 《环境科学》2014,35(10):3683-3691
在灌溉农田生态系统,土壤剖面中硝态氮(NO-3-N)的积累、分布、运移及地下水氮污染不仅受灌溉、施肥的影响,也与土壤质地有密切联系.本研究在黑河流域中游临泽平川绿洲设置了黑河河漫滩-老绿洲农田-新垦绿洲农田-绿洲外围固沙带一个监测断面10个观测井,对地下水NO-3-N含量进行连续监测,并对不同景观单元非饱和带土壤质地和NO-3-N含量进行了分析,对不同质地土壤NO-3-N在剖面的运移变化和氮淋溶损失进行监测.结果表明老绿洲农田,0~300 cm土层土壤质地的垂向分布为上层砂壤土,下层为壤土和黏壤土;而新垦沙地农田在土壤剖面中也有洪积黏土层出现,但0~300 cm不同土层砂粒含量均在80%以上;绿洲外围固沙带土壤在160 cm以下出现黏土层分布;土壤NO-3-N含量与黏粉粒含量呈显著相关,显著程度固沙带>新垦绿洲农田>老绿洲农田.土壤黏粉粒含量显著影响氮的淋溶.老绿洲农田区域,地下水NO-3-N含量变动在1.01~5.17 mg·L-1,平均2.65 mg·L-1;新垦沙地农田区域地下水NO-3-N含量变动在6.6~29.5 mg·L-1,平均20.8mg·L-1,2013年5~10月平均含量为26.5 mg·L-1,较2012年同期平均值上升了9.5 mg·L-1;绿洲外围固沙带地下水NO-3-N含量呈明显的增加趋势.地下水浅埋区非饱和带土壤质地是土壤NO-3-N淋溶损失和地下水NO-3-N污染的关键控制因子.边缘绿洲新垦沙地农田是地下水氮污染的脆弱带和高风险区域,实施有效降低地下水氮污染的种植模式及施肥和灌溉管理是区域生态农业需考虑的问题.  相似文献   

18.
以盐渍土壤为研究对象,通过吸附试验和室内土壤培养试验,分析生物炭及木醋液酸化生物炭与尿素配施后对盐渍土壤活性氮、脲酶活性和氨挥发的影响,为提高盐渍土壤氮素有效性提供理论和技术支撑.吸附试验表明,木醋液酸化生物炭提高了对铵态氮的吸附量,与生物炭相比,提高了2.28%~18.18%.土壤培养试验表明,与单施尿素处理相比,生物炭和木醋液酸化生物炭与尿素配施处理使土壤硝态氮、铵态氮分别减少了0.72%和25.26%、 1.11%和16.93%;提高了土壤可溶性有机氮和可溶性全氮含量.木醋液酸化生物炭与尿素配施提高了脲酶活性,而生物炭与尿素配施处理则降低了土壤脲酶活性.木醋液酸化生物炭与尿素配施处理氨挥发累积量在不同培养时期均低于单施尿素处理及生物炭与尿素配施处理,且能降低土壤的pH,而未改性的生物炭则提高了土壤pH.因此,在盐渍土区,采用木醋液对生物炭进行酸化后再与氮肥配合施用,不仅有效降低了土壤pH,提高土壤脲酶活性以及可溶性有机氮含量,还可以适当降低土壤铵态氮和硝态氮含量,减少氨挥发,有利于减少土壤无机氮素的损失和提高盐渍土壤氮素有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号