首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
一体式厌氧氨氧化工艺处理高氨氮污泥消化液的启动   总被引:1,自引:0,他引:1  
利用新型固定生物膜一活性污泥反应器处理实际污泥消化液,通过接种短程硝化污泥和厌氧氨氧化生物膜填料,逐渐提高进水氨氮浓度并控制溶解氧浓度在0.11~0.42mg/L,系统在65d内实现了短程硝化-厌氧氨氧化反应的启动.反应器系统稳定运行阶段具有良好的污染物去除效果,进水COD和氨氮浓度为921和1120.8mg/L,COD、氨氮和总氮去除率分别为66.8%,99.0%和94.4%,总氮去除负荷为0.27kg N/(m3·d).试验表明采取逐步提高进水中消化液比例的策略,有利于一体式厌氧氨氧化工艺的快速启动.进一步分析发现系统同时存在厌氧氨氧化和反硝化的脱氮途径,对总氮去除的贡献率分别为67.4%~91.1%和8.9%~32.6%.  相似文献   

2.
通过血清瓶批试研究了温度为30℃时,SNAD(simultaneous partial nitrification,anaerobic ammonium oxidization and denitrification)反应器内的颗粒污泥R1(1~2.5mm)和絮体污泥R2(0~0.25mm)的脱氮特性.结果表明,颗粒污泥的好氧氨氮和好氧亚硝态氮氧化活性分别为0.166,0kg N/(kg VSS?d).厌氧氨氧化、亚硝态氮反硝化、硝态氮反硝化总氮去除速率分别为0.158,0.105,0.094kg N/(kg VSS?d).絮体污泥的好氧氨氮氧化活性和好氧亚硝态氮氧化活性分别为0.180,0kg N/(kg VSS?d).厌氧氨氧化、亚硝态氮反硝化、硝态氮反硝化总氮去除速率分别为0.026,0.096,0.108kg N/(kg VSS?d).颗粒污泥和絮体污泥都具有良好的亚硝化性能和反硝化性能.颗粒污泥的厌氧氨氧化性能良好,絮体污泥的厌氧氨氧化性能较差.扫描电镜显示,在SNAD颗粒污泥的表面主要是一些短杆菌和球状菌.在SNAD颗粒污泥中心区域主要为火山口状细菌.在絮体污泥中,同时存在短杆菌,球状菌和火山口状细菌.  相似文献   

3.
城市生活污水SNAD工艺的启动研究   总被引:3,自引:0,他引:3  
采用SBR反应器,以城市生活污水为原水,进行同步亚硝化、厌氧氨氧化、反硝化(SNAD)工艺的启动研究.首先接种厌氧氨氧化(anammox)颗粒污泥,在高曝气量下(500L/h)培养得到亚硝化颗粒污泥,然后再次接种anammox颗粒污泥,在低曝气量下(40L/h)培养得到SNAD颗粒污泥.在亚硝化稳定期,氨氮平均去除率达到94%,亚硝态氮平均积累率达到95%.在SNAD稳定期,总氮平均去除率为85%.批试实验结果表明,亚硝化稳定期亚硝化颗粒污泥的好氧氨氮和亚硝态氮氧化活性分别为为0.234和0kg N/(kg VSS·d).SNAD颗粒污泥的厌氧氨氧化总氮去除、亚硝态氮反硝化、好氧氨氮氧化、好氧亚硝态氮氧化活性分别为0.158、0.104、0.281、0kg/(kg VSS·d),其中硝态氮反硝化活性在0~120min和120~360min内分别为0.061和0.104kg/(kg VSS·d).扫描电镜显示,SNAD颗粒污泥表面以短杆状菌和球状菌为主,可能为好氧氨氧化菌(AOB)和反硝化菌,颗粒污泥内部以火山口状的细菌为主,可能为anammox菌.  相似文献   

4.
不同种泥的厌氧氨氧化反应器的启动及动力学特征   总被引:3,自引:2,他引:1       下载免费PDF全文
采用2套UBF反应器R1和R~2,R1接种好氧硝化污泥与厌氧氨氧化-反硝化污泥的混合污泥,R~2接种厌氧消化絮状污泥与厌氧氨氧化-反硝化污泥的混合污泥,采用逐渐提高进水亚硝氮和氨氮浓度的方式富集培养ANAMMOX菌.结果表明,R1启动时间短,仅耗时36 d就成功启动了厌氧氨氧化反应器,而R~2则需要53 d; R1和R~2脱氮效果均较好,但R1脱氮效果优于R~2且稳定.在稳定运行阶段,R1氨氮、亚硝氮和总氮去除率分别为99. 92%、96. 64%和81. 87%左右,R~2氨氮、亚硝氮和总氮去除率分别为97. 54%、94. 91%和80. 98%左右.反应器启动成功后,Candidatus Kuenenia属在所检测出的属中丰度位列前六,在R1和R~2中的相对丰度分别为3. 22%和2. 35%;改进的Stover-Kincannon基质去除模型和二级动力学模型对拟稳态阶段R1和R~2的脱氮性能均能进行较好地拟合,经计算,R1的最大基质去除速率Umax稍大于R~2,说明R1的脱氮潜力较大.  相似文献   

5.
城市污水培养好氧颗粒污泥的中试研究   总被引:5,自引:5,他引:0       下载免费PDF全文
涂响  苏本生  孔云华  竺建荣 《环境科学》2010,31(9):2118-2123
以城市污水为处理对象,在中试SBR反应器中接种厌氧消化污泥,经过210 d运行,培养出了平均粒径在330μm的好氧颗粒污泥.实验表明,经过前3个月较低的进水有机负荷,反应器对污染物的去除效果逐步提高并达到稳定,活性污泥中与脱氮除磷相关的微生物大量富集.运行周期缩短为6 h,污泥的沉降性能和污染物去除特性保持良好,同时污泥平均粒径开始增大.好氧颗粒污泥完全形成以后,SVI值为30 mL.g-1,污泥浓度MLSS达到8.8 g.L-1,MLVSS/MLSS增至82%,氧利用速率OUR达到5.32 mg.(min.L)-1.颗粒外层以杆状菌为主,内层主要是球菌.单个周期内颗粒污泥对COD和总磷的去除率保持在90%,氨氮几乎完全去除,出水中无硝氮和亚硝氮累积,总氮的去除率达到80%,实现了良好的同步硝化反硝化和同步脱氮除磷效果.  相似文献   

6.
高浓度氨氮消化污泥脱水液半短程硝化试验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
采用A/O工艺考察了消化污泥脱水液半短程硝化及维持的影响因素和控制方法.结果表明,在温度9~20℃、平均DO浓度5.4 mg/L、SRT 30 d左右时,进水氨氮负荷(以N计,下同)0.64 kg/(m3·d)的条件下启动,经过29 d实现了短程硝化,此后的65 d内,动态控制反应器游离氨FA>4 mg/L时,70%亚硝氮累积率的短程硝化得以维持;在实现短程硝化的基础上,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;当氨氮负荷降至0.19 kg/(m3·d)时(FA<1 mg/L),短程遭到破坏,在不同FA下取样做FISH分析,进一步证明了高FA是维持半短程硝化的主要因素;在进水中COD为282 mg/L, C/N仅为0.85的条件下,由于实现了短程硝化,系统TN去除量约为91 mg/L.结果分析表明,消化污泥脱水液在中低温、高DO浓度、长SRT下,通过动态控制氨氮负荷和pH值等运行参数,在系统中维持适宜的FA浓度(>4 mg/L),可以实现并维持半短程硝化,为后续的厌氧氨氧化提供进水或回流到污水厂主流区而节省反硝化碳源.  相似文献   

7.
好氧颗粒污泥亚硝化工艺的启动与运行特性研究   总被引:2,自引:8,他引:2  
杨洋  左剑恶  卜德华  顾夏声 《环境科学》2007,28(11):2462-2466
以具有硝化功能的活性污泥与厌氧产甲烷颗粒污泥的混合物接种小试曝气上流式污泥床反应器,采用自配无机氨氮废水为进水,在中温(30~35℃)条件下成功培养获得亚硝化颗粒污泥,亚硝化工艺的进水NH4-N负荷可达2 .5~3 .0 kg/(m·d),氨氮去除率和亚硝化率均可稳定在90%以上;进水中约100 mg/L的有机COD对亚硝化工艺的运行无明显影响;常温(约20℃)条件下亚硝化工艺也能高效稳定运行.  相似文献   

8.
接种不同普通污泥的厌氧氨氧化反应器的启动运行研究   总被引:13,自引:3,他引:13  
采用 3套相似的小试UASB系统 ,分别接种普通厌氧颗粒污泥、普通厌氧颗粒污泥与好氧活性污泥的混合污泥以及河底污泥 ,以自配含NH 4 N和NO-2 N的废水为进水 ,分别经过 2 2 5d、2 2 0d和 2 5 0d的启动运行 ,均成功实现了厌氧氨氧化过程 ,氨氮去除率都达到 80 %以上 ,但在各反应器中由厌氧氨氧化过程所去除的氨氮与亚硝酸氮的比例有较大区别  相似文献   

9.
采用2套UBF反应器R1和R2,R1接种好氧硝化污泥与厌氧氨氧化-反硝化污泥的混合污泥,R2接种厌氧消化絮状污泥与厌氧氨氧化-反硝化污泥的混合污泥,采用逐渐提高进水亚硝氮和氨氮的浓度的方式富集培养ANAMMOX菌。结果表明,R1启动时间短,仅耗时36 d就成功启动了厌氧氨氧化反应器,而R2则需要53 d;R1和R2脱氮效果均较好,但R1脱氮效果优于R2且稳定。在稳定运行阶段,R1氨氮、亚硝氮和总氮去除率分别为99.92%、96.64%和81.87%左右,R2氨氮、亚硝氮和总氮去除率分别为97.54%、94.91%和80.98%左右。反应器启动成功后,Candidatus Kuenenia属在所检测出的属中丰度位列前六,在R1和R2中的相对丰度分别为3.22%和2.35%;改进的Stover-Kincannon基质去除模型和二级动力学模型对拟稳态阶段R1和R2的脱氮性能均能进行较好的拟合,经计算,R1的最大基质去除速率Umax稍大于R2,说明R1的脱氮潜力较大。  相似文献   

10.
为将部分亚硝化-厌氧氨氧化技术(PN/A)应用于高浓度氨氮废水的处理,本研究以经破碎后的全自养脱氮颗粒污泥为种污泥,通过协同控制进水氨氮负荷(NLR)、各格室溶解氧(DO)水平和游离氨(FA)浓度等参数,在106 d内成功启动了三级连续流反应器.结果表明,颗粒污泥在启动初期呈现明显的亚硝化功能.反应器采用高NLR和限制曝气的控制策略,能够有效控制亚硝酸氧化菌增殖,并避免DO对厌氧氨氧化菌的抑制作用,有利于颗粒密实度和脱氮活性的提升.当进水氨氮浓度升至350 mg·L-1时,通过调节进水p H和碱度投加量,可以消除前端格室内高FA浓度对功能菌活性的不利影响.反应器最终实现了7. 2 kg·(m~3·d)-1的总氮去除负荷,较传统活性污泥法高出50~100倍.模拟不同曝气强度的序批次实验也证明,各格室污泥的脱氮活性持续增强,且格室1中颗粒污泥的成熟度最高.期间,胞外聚合物含量与比总氮去除速率呈现良好的线性相关(R2 0. 97),这意味着颗粒密实度的改善对提升反应器性能具有积极意义.  相似文献   

11.
部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液   总被引:16,自引:1,他引:15       下载免费PDF全文
在缺氧滤床+好氧悬浮填料生物膜工艺中实现部分亚硝化,然后进行厌氧氨氧化(ANAMMOX),考察其对高含氮、低C/N污泥脱水液的处理能力.结果表明,亚硝化反应器在15~29℃、DO 6~9mg/L条件下,通过综合调控进水氨氮负荷(ALR)、进水碱度/氨氮、水力停留时间(HRT)等运行参数,可以调节出水(NO2--N)/(NH4+-N)的比率,能够较好地实现部分亚硝化反应以完成厌氧氨氧化.当进水ALR为1.16kg/(m3·d),进水碱度/氨氮为5.1时,出水(NO2--N)/(NH4+-N)在1.2左右,(NO2--N)/(NOx--N)大于90%,进入ANAMMOX反应器的氮物质去除率达到83.8%.  相似文献   

12.
蚀刻液废水厌氧氨氧化脱氮性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
李祥  黄勇  朱莉  袁怡  李大鹏  张丽 《中国环境科学》2012,32(12):2199-2204
采用上流式生物膜反应器接种厌氧氨氧化污泥,研究了印制电路板行业蚀刻液废水厌氧氨氧化脱氮可行性.结果表明,蚀刻液废水作为NH4+-N源时,其所携带的物质对厌氧氨氧化污泥活性具有毒性作用.当蚀刻液废水稀释到NH4+-N浓度150mg/L进入反应器14d后,厌氧氨氧化氮去除速率从3.2kg/(m3·d)下降到1.2kg/(m3·d).但是通过驯化培养可以很好地缓解蚀刻液对厌氧氨氧化污泥的毒性影响.经过110d的驯化,蚀刻液废水稀释到NH4+-N浓度300mg/L进入反应器后并未出现明显的抑制现象.厌氧氨氧化氮去除速率从1.6kg/(m3·d)上升到6.0kg/(m3·d).说明通过驯化培养后,厌氧氨氧化工艺能够很好的运用到PCB行业高NH4+-N废水的处理.  相似文献   

13.
焦化废水厌氧氨氧化生物脱氮的研究   总被引:4,自引:1,他引:3       下载免费PDF全文
采用厌氧氨氧化(ANAMMOX)工艺处理焦化废水,在厌氧34℃、pH值7.5~8.5,HRT为33h的条件下,经过115d成功启动厌氧氨氧化反应器.当进水NH4+-N、NO2--N浓度分别为80、90mg/L左右时,TN负荷可达160mg/(L·d),系统NH4+-N和NO2--N的去除率最高分别达86%和98%,TN去除率可达75%.GC-MS分析结果表明,酚类是焦化废水中较易被生物利用的有机物,ANAMMOX过程对好氧短程硝化工艺出水残余低浓度酚类有机物有进一步去除作用.  相似文献   

14.
厌氧氨氧化微生物颗粒化及其脱氮性能的研究   总被引:18,自引:4,他引:18  
利用厌氧颗粒污泥作为种泥,启动SBR反应器,旨在培养厌氧氨氧化颗粒污泥以及研究其脱氮性能.结果表明,水力停留时间(HRT)是富集厌氧氨氧化微生物的1个重要控制因素,以HRT为30 d,第58 d时,SBR反应器就出现厌氧氨氧化现象,与此同时,颗粒污泥由灰黑色变为棕褐色,粒径减小.到第90 d时,成功培养出厌氧氨氧化颗粒污泥,NH+4-N和NO-2-N同时被去除,最大去除速率分别达到14.6 g/(m3·d)和6.67 g/(m3·d).从第110 d开始,逐步降低HRT,以提高基质负荷促进厌氧氨氧化菌生长.到目前t=156 d,HRT降到5 d,氨氮和亚硝酸氮的去除率分别达到60.6%和62.5%,亚硝酸氮/氨氮的比率为1.12.污泥也由棕褐色变为红棕色,形成红棕色的具有高厌氧氨氧化活性颗粒污泥,总氮负荷达到34.3 g/(m3·d).  相似文献   

15.
IntroductionTheanaerobicammoniaoxidation(Anammox)isanovelbiologicalreactionthatproducesmolecularnitrogenwithammoniaaselectrondonorandnitriteaselectronacceptor,respectively (vandeGraff,1995 ;1996 ) .Anammoxprocesshasbeenshowntobeapromisingwayofremovingnitr…  相似文献   

16.
采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.  相似文献   

17.
一体化全程自养脱氮(CANON)工艺的效能及污泥特性   总被引:10,自引:0,他引:10       下载免费PDF全文
在氨氮浓度梯度升高的条件下,通过控制DO等方式在一体化CSTR反应器中实现了一体化全程自养脱氮(CANON—completely autotrophic nitrogen removal over nitrite).结果表明随进水氨氮浓度(76.05~583.93mg/L)的升高,系统的氨氮和总氮去除负荷逐渐提高,试验期间无亚硝态氮的积累,反应器后期在高氨氮进水下最高氨氮去除率84.4%,最高去除负荷0.42kg/(m3·d);最高总氮去除率72.0%,最高去除负荷0.35kg/(m3·d).污泥氧消耗速率实验得出好氧氨氧化菌的耗氧速率为169.46 mgO2/(gVSS·h)、硝酸化细菌的好氧速率为39.63 mgO2/(gVSS·h).采用总氮去除量和硝态氮产生量的比值(△TN /△NO3-)表征硝酸化反应对出水氨氮浓度的影响.试验进一步研究了反应器内污泥形态的变化,得出第102d的污泥粒径(86.36μm)比第30d(54.09μm)增加60%,污泥的SEM分析得出实验后期相对于前期污泥表面丝状菌减少,胞外聚合物增多.以上结果表明该反应器具备良好的造粒功能,有利于自养脱氮工艺的启动与稳定.  相似文献   

18.
研究了ANAMMOX耦合异养反硝化反应器的启动过程,考察了苯酚浓度对耦合反应器脱氮性能的影响.接种2L(占反应器有效容积的20%)挥发性悬浮固体(MLVSS)为6000mg/L的ANAMMOX颗粒污泥,在pH7.8、温度为25℃、HRT为1.5h的条件下经过86d的培养,ANAMMOX耦合异养反硝化启动成功.实验结果表明,在稳定运行阶段,NH4+-N、NO2--N和TN平均去除率分别为85.4%、86.1%和79.9%,TN平均容积负荷和TN平均去除负荷分别为2.63,2.10kg/(m3·d);ANAMMOX颗粒污泥外面包裹着苯酚反硝化菌;系统内异养反硝化与ANAMMOX存在协同和竞争关系.当苯酚浓度≥0.3mmol/L时,ANAMMOX菌的活性受到很大抑制,苯酚浓度的升高加剧了苯酚反硝化菌与ANAMMOX菌之间的竞争;从脱氮效果及系统稳定两方面综合考虑,当苯酚浓度为0.2mmol/L时,耦合效果最好,消耗的NH4+-N、NO2--N与生成的NO3--N之比为1:1.52:0.11.  相似文献   

19.
EGSB反应器中实现完全自营养脱氮与运行优化   总被引:4,自引:0,他引:4       下载免费PDF全文
任宏洋  张代钧  丛丽影 《环境科学》2009,30(5):1454-1460
同时接种好氧氨氧化污泥和厌氧氨氧化污泥启动EGSB反应器,培养完全自营养脱氮颗粒污泥,总氮去除速率达0.101 kg·(m3·d)-1.基于边界层假设模拟颗粒污泥与液相主体间的传质过程,并将其与颗粒污泥内传质过程以及好氧氨氧化、厌氧氨氧化和亚硝酸盐氧化过程相耦合,建立了颗粒污泥完全自营养脱氮模型,应用实验结果对模型进行了验证.根据模拟结果对EGSB反应器运行条件进行优化,总氮平均去除效率由52%提高到61%,平均去除速率由0.103 kg·(m3·d)-1提高到0.114 kg·(m3·d)-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号