首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
全程自养脱氮颗粒污泥培养及动力学研究   总被引:3,自引:1,他引:2  
SBR反应器接种厌氧颗粒污泥,经过3个阶段培养,成功培养出全程自养脱氮颗粒污泥,并对颗粒污泥系统进行动力学研究.建立了描述全程自养脱氮的动力学模型.由于溶解氧(DO)在颗粒污泥内呈梯度分布,模型引入DO校正系数.通过模型研究反硝化作用、亚硝酸盐和DO对过程的影响,模拟结果与实测结果相一致.结果说明,异养反硝化菌的存在,在一定程度上影响厌氧氨氧化(ANAMMOX)过程,但是随着启动的进行,反硝化的影响逐渐降低.初始亚硝酸盐浓度为20~30 mg/L时,厌氧氨氧化开始受到抑制,总氮去除率开始降低.DO浓度的过高或过低都会导致全程自养脱氮效果受限制.根据进水氨氮浓度调整DO浓度,可使总氮去除效率达到较佳水平.进水氨氮浓度为80 mg/L时,最佳DO为0.3~0.6 mg/L.  相似文献   

2.
DO和曝停比对单级自养脱氮工艺影响试验研究   总被引:7,自引:1,他引:6  
方芳  杨国红  郭劲松  秦宇 《环境科学》2007,28(9):1975-1980
为提高SBBR单级自养脱氮系统脱氮性能并考察DO和曝/停比对SBBR单级自养脱氮系统的影响,采用4组对比试验进行研究.结果表明,连续和间歇2种曝气方式均可实现单级自养脱氮,在进水氨氮浓度为160 mg/L左右,温度30℃±2℃,pH值7.8~8.2,HRT为2 d,DO为0.8~1.0 mg/L的条件下,连续曝气系统的氨氮转化率和总氮去除率分别达到80%和70%.DO为(曝气)2.0~2.5 mg·L-1/(停曝)0.2~0.4 mg·L-1,曝/停比为2 h∶2 h的系统则达到90%和80%以上.SBBR单级自养脱氮系统的DO应随其曝/停比进行调节,同时还可能与反应器内生物量及微生物在活性污泥和生物膜中的分布情况有关.本研究还探讨了SBBR单级自养脱氮的机理.  相似文献   

3.
全程自养脱氨氮悬浮填料床反应器性能的研究   总被引:8,自引:0,他引:8  
以NH+4-N溶液为基质建立和启运了全程自养脱氨氮悬浮填料床反应器,反应器连续运行的实验结果表明在pH为8.0~8.5、溶解氧为0.7~1.0mg/L和温度为28℃的条件下.当氨氮表面负荷为2~2.5g/(m2@d)时,其表面去除速率为1.1~1.3/(m2@d),全程自养脱氮率基本稳定在55%左右;全程自养脱氮的最适pH范围为7.5~8,5,其中最佳pH为8.0左右;最适溶解氧范围为0.5~1.5mg/L,其中尤以0.8~1.0ms/L左右为最佳.  相似文献   

4.
全程自养脱氮特性因子的研究   总被引:2,自引:0,他引:2  
以消化污泥脱水液为基质 ,两级串联悬浮填料床反应器的NH+4-N平均表面负荷为 3~ 4g (m2·d) ,总的全程自养脱氮率达 65%~70 %。对反应器中的生物膜污泥采用批式实验 ,研究了全程自养脱氮的特性影响因子。结果表明 :只有在DO限制 (如 0.8mg/L左右 )条件下 ,生物膜污泥才能进行彻底而正常的全程自养脱氮作用 ;全程自养脱氮的适宜pH范围约在 7.5~8.5之间。   相似文献   

5.
全程自养脱氮工艺的研究   总被引:5,自引:0,他引:5  
以悬浮填料床作为全程自养脱氮反应器,用不含有机碳的合成氨氮废水进行反应器的启动。系统的氨氮和总氮去除率分别达80%和60%左右。通过批式实验对全程自脱氮做进一步的研究。结果表明,通过控制反应器中DO的浓度,可以控制氨氧化和反硝化的比率;当DO为0.8mg/L时,氨氮几乎完全转化为氮气,氨氧化和反硝化在此时达到了动态平衡;在低DO情况下,氨氮和亚硝氮同时存在,氨氮和总氮的转化率都大幅度的提高,说明氨氮可以亚硝氮为电子受体,在无外加有机碳源的情况下进行反硝化。  相似文献   

6.
在某水厂,对"两级曝气+两级过滤"生物净化工艺净化低温高铁锰氨氮(5~7.8℃,Fe_(2+)8.0mg/L,Mn~(2+)3.0mg/L,NH_4~+-N3.0mg/L)地下水过程中,氨氮去除机制进行了试验研究.试验表明:一级和二级滤柱分别存在45.22%和35.97%的氮素损失(TN_(loss)),DO实际耗值分别比理论值少24.67%和22.27%.利用DO计量关系证明TN_(loss)过程是耗氧过程,TN_(loss)与TN_(loss)的DO耗值线性相关性较好,R20.970.分析表明:TN_(loss)产生于自养脱氮过程,与吸附、生物同化、异养反硝化和锰氧化耦合反硝化机制无关.利用氮素守恒和DO计量关系定量计算,一级和二级滤柱分别有51.40%、40.93%的氨氮由自养脱氮过程去除.生物硝化耦合自养脱氮是氨氮去除的主要途径,且进水氨氮浓度越高,自养脱氮比例越高.  相似文献   

7.
全程自养脱氮新技术处理污泥脱水液的研究   总被引:15,自引:1,他引:14  
杨虹  李道棠  朱章玉 《环境科学》2001,22(5):105-107
以含有高浓度氨氮的消化污泥脱泥污水为基质,在悬浮填料床反应器中实现了稳定的全程自养脱氮过程.在填料表面培养形成了全程自养脱氮混菌生物膜.反应器的主控条件为T=28℃,pH=8.0左右,溶氧为0.8~1.0 mg/L.两级串联反应器的平均表面负荷为NH4+-N 3~4 g/(m2·d),总的全程自养脱氮率达70%左右.对处理高氨氮含量和低C/N比的废水,全程自养脱氮较常规硝化-反硝化脱氮技术可大大降低氧耗并无需外加有机碳源,因此具有很好的应用前景.  相似文献   

8.
溶解氧对序批式全程自养脱氮工艺运行的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
在常温22~26℃下,接种成熟的全程自养脱氮(CANON)污泥至2个相同的SBR反应器,通过设置不同的初期DO及不同的DO梯度,考察了DO控制策略及DO值对CANON工艺脱氮性能,稳定性及污泥形态的影响.结果表明,初期DO为0.05~0.10mg/L的反应器可以稳定运行,氨氮和总氮的平均去除率分别为99%和85.4%,而初期DO为(0.40±0.5)mg/L的反应器的氨氮和总氮平均去除率分别为99%和0;在反应器运行稳定之后,逐渐增加DO浓度, DO为0,0.2,0.4,0.5mg/L时的厌氧氨氧化反应速率分别为35.95,23.89,31.50,19.25mgN/(L·h),延时曝气2h后反应器仍可正常运行.在一定DO范围内,CANON反应器的活性随着DO的升高而升高,较高DO对接种初期的CANON反应器冲击较大且不可逆,对稳定运行的CANON反应器的影响较小;但是当CANON工艺稳定运行之后,短时高DO对CANON工艺的影响是可逆的.显微镜照片显示稳定运行的CANON反应器内出现了颗粒化的趋势.  相似文献   

9.
SBR反应器内短程硝化系统快速启动及影响因素研究   总被引:7,自引:0,他引:7  
探讨了采用序批式反应器(SBR)快速启动自养短程硝化系统的方法,研究了溶解氧(DO)、pH、温度、外加有机碳源对自养短程消化系统的影响。以硝化污泥接种反应器(SBR),在纯自养条件下利用高浓度溶解氧1.0~1.6mg/L和中温(35±1)℃达到亚硝酸氮的快速积累。结果表明,在进水氨氮浓度为280~300mg/L,HRT为12h,控制pH值为7.5~8.5、温度在(28±1)℃、溶解氧浓度为0.8~1.2mg/L条件下,氨氮去除率达到90%以上,亚硝酸氮积累率高达95%。试验证明投加有机碳源(COD)50mg/L左右时,不会对短程硝化系统产生影响,且能实现较高氨氮去除率和稳定的亚硝酸氮积累率。  相似文献   

10.
钟琼  方丽 《环境工程》2012,30(4):36-38
氧化部分氨氮到亚硝酸氮,然后进行完全自养厌氧氨氧化反应,即称SHARON-ANAMMOX工艺,该工艺是近年开发的针对高浓度氨氮废水生物处理较为经济合理的技术之一。其过程控制的关键是第一步亚硝化(SHARON)工艺积累亚硝酸菌,并使氨氮氧化到亚硝酸氮的转化率控制在50%左右,以最合理满足厌氧氨氧化对底物的需求。在进水pH=7.6,ρ(氨氮)=750 mg/L时顺利启动了SHARON反应器,氨氮的转化率达50%左右。研究结果表明,进一步提高氨氮浓度和进水pH,反应器可以维持稳定运行。  相似文献   

11.
溶解氧对膜生物反应器处理高氨氮废水的影响   总被引:4,自引:0,他引:4  
采用膜生物反应器(MBR)处理高氨氮有机废水,探讨了溶解氧(DO)对有机物、氨氮、总氮等去除效果的影响。当进水COD1500mg/L,NH4+-N150mg/L,TP为15mg/L,pH7.5~8.0,MLSS控制在6000~7000mg/L,DO在0.5~4mg/L时对COD的去除效果没有明显影响,都可高达95%;在DO为4.0和2.0mg/L时对NH4+-N的去除率都很高,最高可达99.17%,在DO为0.5mg/L时明显降低,最低降至48.30%。在DO2.0mg/L时,取得了较好的同步硝化反硝化效果,COD、NH4+-N、TN去除率分别高达97%、97%、68%。MBR中硝化反应的比氨氮消耗速率与氨氮浓度成零级反应动力学,比氨氮硝化速率为0.0979/d,比常规处理系统中的污泥硝化活性高。  相似文献   

12.
为了解厌氧/好氧运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步硝化反硝化(SND)的耦合脱氮除磷特性,以实际低C/N (约为3.5)生活污水为处理对象,先通过调控进水C/N考察其对EBPR启动和聚磷菌(PAOs)富集情况的影响,再通过调控好氧段DO浓度考察其对系统脱氮除磷性能、SND率及碳源转化特性的影响.结果表明,DO浓度为2.0mg/L,当进水C/N由3.2提高至7.5并降至3.8时,反应器出水PO43--P浓度由3.9mg/L逐渐降至0.5mg/L以下,且厌氧释磷量(PRA)由3.3mg/L逐渐升高至约30mg/L.此后,当DO浓度逐渐降至约1.0mg/L时,SND现象愈加明显,且其与EBPR耦合使得系统总氮(TN)和PO43--P去除率分别提高至85%和94%.但当DO浓度约为0.5mg/L时,硝化过程进行不完全,亚硝酸盐积累较为明显,耦合系统中存在同步短程硝化反硝化现象.DO浓度为约1.0mg/L时,系统具有最高的脱氮除磷性能.此外,当DO浓度由2.0mg/L降至0.5mg/L时,PAOs较聚糖菌(GAOs)在厌氧内碳源储存中的贡献逐渐减小(PPAO,An由30.3%逐渐降至20.2%),PRA降低约7mg/L.DO浓度为1.0~1.5mg/L最有利于系统厌氧段内碳源PHA的合成.  相似文献   

13.
pH和DO对好氧颗粒污泥去除高氨氮废水的影响研究   总被引:1,自引:0,他引:1  
研究使用SBR成功培养的结构紧密、外形规则,具有良好脱氮性能的成熟好氧颗粒污泥处理高浓度氨氮废水,并探讨pH和DO对其处理效果的影响,旨在为工程实践提供理论依据。通过人工模拟废水,以蔗糖作为唯一碳源,NH4Cl为氮源,将进水NH4+-N浓度由300 mg/L逐步提高至900 mg/L,相应的NH4+-N负荷由0.6 kg/(m3.d)提高至1.8 kg/(m3.d),考察pH和DO对其处理效果的影响。研究结果表明:当控制反应器pH为8.0,曝气量为75 L/h时,好氧颗粒污泥脱氮的效果最好,氨氮去处率分别为96.70%9、2.33%。由于运行过程中每隔15 min监测每个反应器pH值,使其维持在各自pH值7.0±0.1范围内。这种酸碱度环境对异养菌等微生物并没有产生抑制作用;因此在各pH条件下,COD去除的所需时间和去除率基本没有差别。在不同的DO下,COD在初始的60 min里降解速度有明显区别。曝气量为150 L/h时,COD的降解速度最快,但是曝气量过大颗粒污泥内部厌氧区被压缩,因此选择最佳的曝气量为75 L/h。  相似文献   

14.
低温低氨氮SBR短程硝化稳定性试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在11~15℃条件下,采用序批式反应器(SBR)研究(50±5)mg/L氨氮浓度下短程硝化的稳定性.结果表明,2种溶解氧浓度(初始DO浓度分别为0.9~1.5,4.5~5.0mg/L)下反应器均能达到良好的稳定性和去除效果,150个周期内亚硝化率一直维持在95%以上,氨氧化率85%以上,平均SVI为35.22mL/g,2种DO水平下的平均氨氮污泥负荷分别为0.15,0.23kgN/(kgMLSS·d).当初始DO浓度为4.5~5.0mg/L时,21~23℃条件下无法实现短程硝化的稳定运行,经过42个周期亚硝化率降至70%,而31~33℃条件可以实现短程硝化的恢复并维持其稳定.经过不同温度条件下的对比分析及FISH试验研究,表明11~15℃与31~33℃均可抑制NOB的活性,从而有利于实现生活污水短程硝化的稳定运行.  相似文献   

15.
以模拟低C/N比污水为研究对象,采用集成模块式污水处理装置与技术,在反应器主反应区实现了同步硝化反硝化(SND),研究了在不同DO、HRT、C/N比、pH值下污水氨氮、总氮的去除,研究结果表明,DO=1.2~1.4mg/L,总HRT=20h(主反应区HRT=8h),原水C/N=5:1,pH=7.5时,NH3--N可以从15mg/L降至2.5mg/L,总氮可以从20mg/L降至4mg/L,去除率可以达到83%和80%;主反应区SND动力学模型求解得出集成模块式污水处理SND动力学方程及反硝化过程中硝酸盐氮饱和常数 =1.55mg/L,远高于普通活性污泥反硝化过程中的饱和常数0.06~0.2mg/L.集成模块式污水处理技术能高效去除低C/N比污水中的总氮,且具有运行稳定和抗冲击等优点.为中小城镇生活污水深度脱氮提供了技术支持和理论基础.  相似文献   

16.
SBR亚硝化快速启动过程中影响因子研究   总被引:10,自引:5,他引:5  
李冬  陶晓晓  李占  王俊安  张杰 《环境科学》2011,32(8):2317-2322
在低DO条件下对SBR反应器实现快速亚硝化的途径及影响因素进行研究.控制反应器主要参数为:DO 0.15~0.40mg/L,pH值7.52~8.30,温度22.3~27.1℃,曝气时间为8 h.通过高、低氨氮浓度(245.28 mg/L与58.08 mg/L)交替进水的方式,经过57个周期(36 d)的稳定运行成功实现...  相似文献   

17.
采用SBR反应器建立了一套通过特定pH终值调控曝气停止点,以实现稳定部分亚硝化的策略,整个运行过程分为3个阶段,阶段Ⅰ启动亚硝化,阶段Ⅱ在稳定亚硝化的同时探索pH终值的设定规律,阶段Ⅲ采用pH终值设定规律实现稳定部分亚硝化,通过跨越夏、冬季(7~35℃)共148d的运行,考察SBR系统内有机物、氮素的转化规律,并分析不同温度(23、18、13℃)对部分亚硝化反应过程的影响.结果表明,在低DO(0.2~0.4mg/L)和MLSS为4000mg/L的条件下,控制pH终值为(7.73±0.02),使出水FA在0.5~1.2mg/L,可稳定部分亚硝化期间的出水NO2--N/NH4+-N值在1~1.4之间,出水亚硝积累率(NAR)维持在85%以上,有机物去除率在60%以上.比氨氧化速率、比亚硝态氮氧化速率、比COD去除速率均随温度下降而降低,但降低趋势较缓,且反应均能稳定完成.  相似文献   

18.
采用两级CSTR反应器对实际生活污水亚硝化的启动过程及稳定运行主要影响因素进行了研究.通过向生活污水里投加(NH4)2SO4来提高进水氨氮浓度,并逐渐调整两级反应器的曝气强度至DO浓度分别为(1.5±0.12),(0.35±0.1) mg/L,历经45d即实现了亚硝化的启动,亚硝化率保持在90.3%以上,氨氧化率保持在91.2%以上.低氨氮生活污水运行时,通过第一级反应器中三组DO/ALR的效果对比,表明DO/ALR在1.2~2.0 mg O2/(gN·d)时亚硝化效果最好.降低氨氮浓度以及增大HRT两种情况下导致ALR改变时,维持上述DO/ALR范围依然可以保证亚硝化的稳定.  相似文献   

19.
为实现同步硝化内源反硝化除磷(SNEDPR)系统的优化运行,以实际生活污水为处理对象,采用厌氧(180min)/好氧运行的SBR反应器,并通过联合调控好氧段溶解氧(DO)浓度(0.3~1.0mg/L)和好氧时间(150~240min),考察了该系统脱氮除磷特性.并结合荧光原位杂交(FISH)技术对系统优化过程中各功能菌群的结构变化情况进行了分析.试验结果表明,当系统好氧段DO浓度由约1.0mg/L逐渐降至0.3mg/L,且好氧时间由150min逐渐延长至240min后,出水PO43--P浓度稳定在0.4mg/L左右,但出水TN浓度由14.3mg/L降至8.7mg/L,TN去除率由75%提高至84%.此外,随着好氧段DO浓度的降低,SNED现象愈加明显,SNED率由34.7%逐渐升高至63.8%.SNED的加强,降低了出水NO3--N浓度,并提高了系统的脱氮性能和厌氧段的内碳源储存量.FISH结果表明:经127d的优化运行,系统内PAOs,GAOs和AOB(氨氧化菌)仍保持在较高水平(分别全菌的29%±3%,20%±3%和13%±3%),其保证了系统除磷、硝化和反硝化脱氮性能;但NOB(亚硝酸盐氧化菌)含量减少了50%,为系统内实现短程硝化内源反硝化提供了可能.  相似文献   

20.
微波法处理高浓度氨氮废水   总被引:2,自引:1,他引:1  
对微波技术处理高浓度氨氮废水进行研究,分别考察了pH值、微波作用时间、曝气与否、初始氨氮浓度对去除率的影响。研究结果表明:pH和微波作用时间是影响氨氮去除率的关键因素,曝气可增强氨氮的去除率效果;浓度为500 mg/L的氨氮废水,在pH为10,微波作用时间为4 min时,曝气去除效果较好,去除率可达81.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号