首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
北京大学非采暖期室内空气中的气态多环芳烃   总被引:9,自引:0,他引:9  
同步采集并分析了非取暖期北京大学住宅小区和教学楼室内和室外大气样品中气态PAHs含量.结果表明,室内空气中气态PAHs含量高于室外.室内外样品相似的化合物分布谱说明室内污染主要来自室外空气.距交通干线近的样点室内外浓度均高于对照样点,说明非取暖期机动车排放是城市室内外空气中气态PAHs的主要来源.挥发性弱的高环化合物含量表现出比低环易挥发化合物更明显的随距交通干线距离变化的趋势.此外,所有室内空气中气态PAHs含量均高于对应的室外样品.  相似文献   

2.
珠江口及南海近海海域大气多环芳烃分布特征   总被引:3,自引:0,他引:3  
分冬、春两次航次分别采集了珠江口及南海近海海域大气气溶胶样品和气相样品,同时以广州和中山作为陆基对照点,对16种EPA优控多环芳烃进行了分析.结果表明,大气PAHs主要以气态化合物为主,总PAHs(气态+颗粒态)的含量范围为49.6~256.6 ng/m3,平均120.7 ng/m3.珠江口海域大气颗粒态多环芳烃季节变化显著,冬、春航次大气颗粒态多环芳烃的含量分别为6.7~18.0 ng/m3和0.4~5.1 ng/m3,冬季航次期间大气颗粒态PAHs含量的高值主要源于大陆气流对城市群大气PAHs污染的输送,另外干冷的季节亦有利于PAHs向颗粒态的富集.与此相反,气态多环芳烃含量的季节差异不明显.在冬季,随东北季风携带的城市粉尘可以将大气中的气态PAHs捕获,而春季航次的大气PAHs主要来源于西太平洋地区的远程输送和PAHs的海-气交换作用.认为受控于季风活动的水、热因子组合特征,是影响珠江口海域大气PAHs含量与分布的主导因素.  相似文献   

3.
广州市大气中颗粒态多环芳烃(PAHs)的主要污染源   总被引:26,自引:1,他引:26  
采用特征化合物与因子分析对广州市大气中颗粒态PAHs的来源及其贡献率进行研究.结果表明,广州大气中颗粒态多环芳烃主要来源是机动车尾气排放和燃煤,其中机动车为主要污染源,占了69%,其次为燃煤,占了31%.冬季大气中颗粒态多环芳烃污染加重的主要原因为低温、无风的气象条件下形成的逆温效应,主要污染源为机动车的尾气排放;夏季颗粒态多环芳烃污染的增大同样是无风时不利于污染物扩散的结果,但此时燃煤对大气中颗粒态多环芳烃污染的贡献要略大于机动车尾气排放.  相似文献   

4.
广州市大气中多环芳烃分布特征、季节变化及其影响因素   总被引:37,自引:16,他引:21  
李军  张干  祁士华 《环境科学》2004,25(3):7-13
对广州市大气中气态和颗粒态多环芳烃(PAHs)进行了连续一年的采样观测.结果表明,气态和颗粒态样品中PAHs的平均浓度值分别为312.9 ng/m3 和 23.7 ng/m3,即多环芳烃主要存在于气相中,占大气总PAHs年平均的92.5%,且在夏季的比重要高于冬季.所检出的的气态多环芳烃以芴、菲、蒽等低环数化合物为主,其中菲占了总含量的60%以上;颗粒态多环芳烃则以高环数的化合物为主,各化合物所占的比重相当,其相对浓度无显著差别.气态多环芳烃在夏季达到高值,冬季降为低值;而颗粒态与其相反,夏季低值,冬季达到高值.在所测定的气象条件中,温度在影响气态多环芳烃浓度变化的因素中占了绝对优势,其次为风速,其它气象因素未观测到有较明显的影响作用;对颗粒态多环芳烃来说,则无绝对的影响因素,温度、风速和湿度同为重要影响因素,但随着分子量的增加,各因素的影响大小顺序略有不同.  相似文献   

5.
西安采暖季大气中多环芳烃的污染特征及来源解析   总被引:7,自引:3,他引:4  
采用改进型的大流量主动采样器,对西安采暖季大气总悬浮颗粒物(TSP)样品和气相样品进行了连续采集,利用GC-MS测定多环芳烃(PAHs)的浓度.结果表明,颗粒态和气态样品中Σ16PAHs平均值分别为(108.15±41.44)ng/m3和(260.14±99.84)ng/m3,2~3环的PAHs主要分布在气态中,而4环的PAHs主要分布在颗粒态中,PAHs的气固相分配系数和其过冷饱和蒸气压具有良好的相关性.温度与分配系数也具有显著相关性,并应用逐步回归方法得出分配系数与温度的回归方程.利用特征分子比值法进行源解析,发现西安大气中PAHs主要来源于煤的不完全燃烧和汽车尾气的排放,并利用因子分析和多元线性回归对各种来源的贡献率进行了计算.通过污染指数与因子的代表物质进行偏相关分析,发现某些PAHs与SO2、NO2来自于相同的污染源.  相似文献   

6.
对于五大连池大气中PAHs的污染研究,通过在该地区的农村设置大气采样点,进行了为期一个季度的大气样品采集,对PAHs的污染来源进行了初探,运用比值法和主成分分析法相结合对大气中PAHs的来源进行了定性和定量研究,结果表明,煤和生物质等的高温燃烧源是五大连池大气中PAHs的主要污染源,贡献率为83.5%,地表挥发和大气传输源的混合源的贡献率为16.5%。  相似文献   

7.
为实现土壤PAHs (多环芳烃)来源致癌风险的定量化,选取太原市城乡土壤为研究对象,分析PAHs污染水平并建立含量成分谱,利用PMF (正定矩阵因子分解)模型识别污染源,采用蒙特卡罗模拟进行健康风险评估,并联合PMF模型和健康风险模型量化PAHs污染源的健康风险,比较不同污染源对土壤PAHs含量和对致癌风险贡献的差异. 结果表明:①太原市土壤PAHs污染严重,城市地区人群暴露于土壤PAHs的致癌风险超过了可接受风险水平(10?6),农村地区人群超过可接受阈值的概率在10%~50%之间. ②城市土壤中PAHs主要来自燃煤交通混合源(41.5%)、燃煤源(26.0%)、石油源(16.2%)、焦炉排放源(8.2%)和交通排放源(8.1%),农村土壤PAHs主要来自燃煤源(43.3%)、生物质燃烧源(22.3%)、交通排放源(22.7%)和焦炉排放源(11.7%). ③燃煤交通混合源是城市地区致癌风险的最大来源,贡献率为53.7%;交通排放源和燃煤源是农村地区致癌风险的主要来源,贡献率分别为46.3%和45.6%. ④不同污染源对PAHs含量的贡献与其对致癌风险的贡献存在差异,对于城市地区,燃煤交通混合源、交通排放源对PAHs含量的贡献率分别为41.5%、8.1%,而其对致癌风险的贡献率分别为53.7%、13.0%;对于农村地区,交通排放源对PAHs含量的贡献率为22.7%,但其对致癌风险的贡献率为46.3%. 研究显示,规避交通排放源是降低PAHs致癌风险的关键,建议将基于健康风险的定量源解析技术应用到土壤风险管控中,以期更为有效地降低健康风险,保护人体健康.   相似文献   

8.
为了解我国农村地区生活垃圾与玉米秸秆焚烧处置过程烟气中多环芳烃(PAHs)释放特征,对我国农村地区生活垃圾可燃组分以及生活垃圾与玉米秸秆混合焚烧组分在焚烧过程烟气中PAHs化合物释放特征进行分析,利用气相色谱-质谱仪(GC-MS)对样品中的16种PAHs进行分析,研究气态以及颗粒态PAHs的释放因子、环数比例、气固态分配以及排放特征值.结果表明气态PAHs排放因子为当垃圾与秸秆混合比例为1∶2时PAHs的总量最多,而颗粒态为当垃圾与秸秆混合比例为1∶3时PAHs的总量最多;气态PAHs主要集中于2~3环低环数化合物,颗粒态PAHs则主要以中低环数(3~4环)化合物为主,本研究为促进我国村镇生活垃圾处理与资源化运用提供理论依据.  相似文献   

9.
大庆市不同环境介质中多环芳烃污染特征对比及来源解析   总被引:5,自引:4,他引:1  
宋宁宁  冯嘉申  于洋  李迎霞 《环境科学》2017,38(12):5272-5281
为研究不同环境介质中多环芳烃(PAHs)污染特征的异同,对大庆市道路灰尘中多环芳烃的污染特征和来源进行研究,在2012年10月采集了大庆市区23个道路灰尘样品和4个土壤样品.使用戴安ASE300快速溶剂萃取仪提取PAHs,净化浓缩后,利用气相色谱/质谱联用仪(GC/MS)测定了美国环保署列为优先控制污染物的16种PAHs及总PAHs(ΣPAHs)的含量.结果表明,道路灰尘中ΣPAHs含量的范围为579.5~4 656.7 ng·g~(-1),平均值为1839.7 ng·g~(-1).大庆市不同功能区道路灰尘中PAHs占ΣPAHs的质量比例呈现大体相似的特征,低环(2~3环)、中环(4环)、高环(5~6环)PAHs所占比例均值分别为37.9%,37.3%和24.8%.与相关研究中大庆水体及湖泊沉积物中PAHs数据进行对比,发现大庆土壤、湖泊沉积物、湖泊和水泡水体中均为低环PAHs占绝对主导优势,其质量分数高达69.3%~99.97%.ΣPAHs含量的分布受功能区的影响并不显著,与样点周围工厂的类型密切相关.特征化合物比值法表明,研究区PAHs主要来自于石油类燃料的泄漏、石油燃料燃烧及煤炭/生物质燃烧的混合源.正定矩阵因子分解法(PMF)结果表明,研究区道路灰尘中PAHs主要来源为煤炭燃烧、石油泄漏源、工业源以及交通源,其贡献率分别为30.1%、26.9%、23.6%和19.3%,与大庆地区其他环境介质中PAHs来源不完全相同.  相似文献   

10.
厨房空气中PAHs污染特征及来源初探   总被引:11,自引:0,他引:11       下载免费PDF全文
 分析评价了杭州市宾馆和家庭厨房空气中12种PAHs的污染现状、特征及其来源.结果表明,宾馆厨房空气中PAHs的平均浓度为17.23mg/m3,以3~4环PAHs为主;家庭厨房空气中PAHs的平均浓度为7.634mg/m3,以2~4环为主;其萘的相对浓度远高于宾馆厨房.在不抽烟家庭厨房中,卫生球的挥发、烹调对萘的贡献率分别为36%,64%;在抽烟家庭厨房中,香烟烟雾、卫生球的挥发、烹调对萘的贡献率分别为53%,17%,30%.宾馆厨房空气中PAHs主要来源于油烟和燃料燃烧,后者主要产生4、5环PAHs,对其贡献率分别是73%,54%,而油烟的贡献率分别为27%,46%.不同油烟烟雾中PAHs的含量依次为猪油>菜子油>豆油.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号