首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
于2010年4月至2010年10月3个航次调查了湛江湾叶绿素a粒径结构的时空分布,并分析了浮游植物粒径与环境因子之间的关系。春季总叶绿素a变化范围为1.75~4.73 mg/m3,平均值为3.05 mg/m3;微微型浮游植物是叶绿素a的主要贡献者,贡献率为62.9%。夏季总叶绿素a变化范围为8.99~37.98 mg/m3,平均值为21.37 mg/m3;小型浮游植物是叶绿素a的主要贡献者,贡献率为78.8%。秋季总叶绿素a变化范围为2.92~27.85 mg/m3,平均值为6.49 mg/m3,小型浮游植物是叶绿素a的主要贡献者,贡献率为55.7%。平面分布,微微型浮游植物叶绿素a浓度呈湾外到湾内递增的趋势;微型浮游植物叶绿素a浓度核心区域最高,口门区域、中部区域和北部区域无显著性差异;小型浮游植物叶绿素a浓度口门区和中部区域比较高,核心区和北部区域比较低。对湛江湾主要环境因子的典范对应分析(CCA)显示,硝酸盐氮和硅酸盐对小型浮游植物叶绿素a贡献较大,氨氮对微微型浮游植物叶绿素a贡献大,而磷酸盐和水温对微型浮游植物叶绿素a贡献较大,而悬浮物和盐度对3个粒径浮游植物叶绿素a的贡献较小。  相似文献   

2.
通过分析贵州红枫湖不同水文期水体理化特征与碳氮硅含量的时空分布,以期揭示西南山区深水性湖库水环境质量的周期性变化规律。结果表明,在平水期和枯水期,红枫湖水温、pH值、溶解氧、叶绿素a含量等水体上下层变幅较小,丰水期水深6 m左右有明显的分层现象,以溶解氧最为典型,分层期底层水中溶解氧降至1.0 mg/L以下。受外源有机物大量输入和湖内藻类生长的双重影响,丰水期湖泊中DOC含量较平水期和枯水期高。NO_3~--N和DON分别占TDN的23.3%~89.4%、7.4%~26.7%。夏季湖水底层滞水带缺氧条件有利于NH_4~+-N和NO_2~--N的生成,并导致溶解态硅的含量增高。相关性分析表明,贵州高原深水性湖库的季节性水质恶化事件与夏秋季节水体分层结构失稳密切相关。  相似文献   

3.
分别于2014年3月(枯水期)和7月(丰水期)对钦州湾海区Chl a浓度分布及其粒级组成进行了分析。结果表明,研究区域两个时期都具有较高氮浓度和氮磷比,枯水期磷酸盐浓度高于丰水期,Chl a浓度及其粒径结构差异显著。枯水期Chl a浓度(1.70±0.74 μg/L)显著低于丰水期浓度(7.81±3.63 μg/L)(p < 0.01)。优势粒级从枯水期Nano级Chl a(51.8±14.0%)向丰水期Pico级(50.4±17.4%)演变。Pico级与Micro级共同构成了丰水期的Chl a浓度高值,两个时期Nano级Chl a浓度无明显差别。Nano级Chl a对总Chl a浓度的贡献存在着自枯水期优势(51.8±14.0%)至丰水期降低(15.5±9.2%)的动态变化。通过与营养盐和盐度等因子的相关分析,可知浮游植物粒级组成的差异与钦州湾陆地径流的输入、营养盐浓度变动及高密度牡蛎养殖密切相关。  相似文献   

4.
于2010年11月至2011年8月对深圳湾的Chl a总量及粒级结构的时空分布进行了4个季度的调查,并分析了它们与环境因子的关系。结果表明:深圳湾Chl a总量年平均值为10.95 mg/m3,变化范围为0.63 mg/m3~186.99 mg/m3,季节变化表现为秋季(25.45 mg/m3)>夏季(11.18 mg/m3)>春季(4.95 mg/m3)>冬季(2.21 mg/m3)。全年Chl a空间分布均呈现出由湾内向湾外逐渐递减的趋势。春季和夏季深圳湾以微型浮游植物对Chl a总量的贡献占绝对优势(>76%);秋冬两季微型和小型浮游植物对Chl a总量贡献均占有很大的比重(>84%);微微型浮游植物对Chl a总量的贡献全年都很低( < 16%)。相关分析结果表明Chl a总量和Micro-Chl a与DIN呈显著正相关(p < 0.05);Nano-Chl a与DIN、DIP和硅酸盐均呈显著正相关(p < 0.05)。深圳湾高Chl a总量,以小型和微型浮游植物占优势的粒级结构主要是由高营养盐水平引起的;在春季和冬季,光照和温度对粒级结构的形成也起到一定的作用。  相似文献   

5.
不同水期澜沧江梯级水库浮游植物群落结构空间分布特征   总被引:1,自引:0,他引:1  
建坝造成了河流水环境的差异,会导致浮游植物群落具有明显的空间异质性.为探究梯级水库河流的浮游植物分布,本研究选择澜沧江为研究区域,于2018年3月—2019年5月在上游河道、苗尾、功果桥、小湾、漫湾、糯扎渡、景洪、景洪坝下开展了浮游植物的调查.对比了丰、枯水期浮游植物群落结构、Shannon-Wiener多样性指数、Pielou均匀度指数的变化特征,采用Spearman相关性分析确定丰、枯水期浮游植物密度与环境因子间的关系.重点讨论了浮游植物密度较高的小湾和糯扎渡库区浮游植物的年内变化特征.研究结果表明:澜沧江干流丰、枯水期各库区浮游植物种类均以河流型硅藻为主,绿藻门次之;浮游植物密度分别为0.02×106 ~ 16.74×106 cells?L-1和0.26×106 ~ 9.41×106 cells?L-1;丰水期藻密度、生物量、浮游植物多样性、均匀度指数均高于枯水期;小湾和糯扎渡的浮游植物密度及生物量均高于其他库区,全年平均值分别为9.35×106 cells?L-1和2.19×106 cells?L-1;两库的浮游植物群落具有明显差异,浮游植物密度分别在2019年5月和4月达到最高,相关性分析表明氮素是影响浮游植物群落结构变化的关键因子.本研究可为梯级水库河流的水生态环境保护提供一定的支撑和参考.  相似文献   

6.
贵州高原三板溪水库浮游植物功能群时空分布特征   总被引:9,自引:0,他引:9  
为探究贵州高原三板溪水库的浮游植物功能群时空分布特征,于2012—2013年枯水期(11月)、平水期(4月)、丰水期(7月)对三板溪水库浮游植物与水样进行分层采样分析.研究结果表明,水库浮游植物可分为21个功能群,其优势功能群具有明显的水期分布特征:枯水期P+X1+D+J→平水期P+B+C+G→丰水期M+H1+S1+J,垂直分布中平水期和丰水期优势功能群在10 m左右发生变化,枯水期在70 m处变化;各时期水体热分层及营养物质分布差异是产生该特征的主要原因;浮游植物功能群时空分布特征受环境变化影响,水温、p H和N/P变化是浮游植物功能群结构变化的最主要因素;浮游植物功能群生长策略变化规律为:枯水期CR/C/S策略藻种→平水期R/CR/CS策略藻种→丰水期S/CS/CR/R策略藻种;通过浮游植物功能群与生境之间的相互关系可以得出:三板溪水库水体处于富营养状态.  相似文献   

7.
根据1997年8月至2003年5月对粤东近海重要渔业水域生态环境研究的资料,对叶绿素的含量、组成和季节变化进行了分析讨论。结果表明,广东东部近海的叶绿素平均含量6.45mg/m3,其中柘林湾水域的叶绿素含量最高(9.12mg/m3),大亚湾水域的含量最低(3.61mg/m3)。考洲洋、珠江口水域叶绿素含量有季节/年度差异;大亚湾、红海湾水域叶绿素含量的季节差异较小。叶绿素a是叶绿素的主要组分,占60%~80%,叶绿素b、c分别占7%~24%和6%~19%。研究水域的叶绿素含量和季节变化与营养盐、水体的温盐等理化因子的变化有关,而叶绿素组成的变化与浮游植物的生长状况、群落结构以及环境条件的变化有关。  相似文献   

8.
星云湖是典型的蓝藻型富营养化湖泊,为了解星云湖藻量昼夜变化节律及垂直分布情况,2013年8月29日—30日,每隔2h对星云湖藻类进行分层采样,分析了各样品叶绿素a含量和藻类密度。结果表明:同一时间点下,各层藻量参差不齐,24h内各层藻量随时间推移起伏变化,上层藻量昼夜变化曲线呈典型的双峰型,峰值分别出现在14时和2时左右;上层藻量变化与水温呈显著正相关,白天藻类主要分布于水体上层(叶绿素a含量和藻类密度分别为180.43±24.38mg/m3和46670.2±6631.9×104cells/L),夜晚上层藻量明显下降(叶绿素a含量和藻类密度分别为156.81±14.67mg/m3和40154.4±7694.6×104cells/L);夜晚,各层水体藻量虽然起伏变化,但总体上,方差分析表明各层藻量无显著差异。  相似文献   

9.
基于2012年夏秋季大连湾海水中溶解态和不同粒级颗粒物中氮、磷、硅、叶绿素a的调查资料,对大连湾海水不同粒级颗粒物中营养盐和叶绿素a的时空分布特征进行了分析,对不同粒级浮游植物的营养要素组成及营养盐结构特征进行了探讨.结果表明,大连湾海水中溶解态营养盐、叶绿素a高值区主要出现在臭水套和甜水套湾附近海域,并由湾内向湾外递减,各粒级颗粒物中营养盐分布趋势存在着不一致性,但高值区易出现在西北部海域; 除无机氮外,海水中营养盐总体表现出秋季高于夏季,各粒级叶绿素a浓度表现为夏季高于秋季;磷是大连湾海水中浮游植物生长的限制元素,硅是不同粒级浮游植物营养盐的限制要素;微微型浮游植物对现有的营养结构更具适应性.  相似文献   

10.
水文地貌分区下鄱阳湖丰水期水质空间差异及影响机制   总被引:4,自引:0,他引:4  
张琍  陈晓玲  张媛  陈莉琼  张鹏 《中国环境科学》2014,34(10):2637-2645
在2011年7月鄱阳湖丰水期水质参数采样分析的基础上,结合Delft3D水动力模型结果,针对鄱阳湖湖区建立了8个水文地貌分区,分析了丰水期总悬浮泥沙(TSS),总磷(TP)、总氮(TN)与叶绿素a(Chla)浓度的空间分布特征,研究了各分区下的水质因子之间的关系.结果表明,鄱阳湖丰水期平均TSS浓度为33.65mg/L,远高于2003年以前10mg/L的平均浓度水平;平均氮、磷营养盐浓度分别为1.61mg/L及0.075mg/L,已达到并远远高于富营养化发生条件,而平均Chla浓度为5.99μg/L,并未达到富营养化湖泊水体临界值.Chla与其他各水质因子无显著相关性,而高泥沙浓度区域的TP与TSS呈现显著相关性.在不同鄱阳湖水文地貌分区下,高强度湖泊采砂活动的北部高流速水域TSS浓度高于河口三角洲水域3倍;TN,TP营养盐浓度表现为流域面源污染负荷大的赣江,饶河河口三角洲水域≥高强度湖泊采砂活动的北部高流速水域>流域污染负荷较小的修水河口三角洲水域及中部湖心水域.Chla则受营养盐浓度水平与水动力因素共同作用而表现为河流交换速度慢且高营养盐浓度水域>水流交换速度快且高营养盐浓度水域>水流交换速度慢且低营养盐浓度水域,其中饶河信江潼津河河口三角洲水域Chla浓度最高,平均水平达到12.53μg/L,超过了富营养化水体的临界值.  相似文献   

11.
太湖水体Chl-a预测模型ARIMA的构建及应用优化   总被引:2,自引:0,他引:2  
李娜  李勇  冯家成  单雅洁  钱佳宁 《环境科学》2021,42(5):2223-2231
叶绿素a(Chl-a)是湖泊浮游植物生物量的重要指标,其含量能反映水中浮游植物的丰度和变化规律.以1999年12月~2019年8月太湖水体Chl-a和环境因子的逐月监测数据为基础,运用主成分分析方法探讨了Chl-a与环境因子的关系,据此建立了Chl-a与主要环境因素之间的多元线性逐步回归模型及自回归综合移动平均模型(ARIMA).结果表明:①太湖Chl-a浓度存在着明显的季节变化,且总体处于上升趋势.总磷(TP)、高锰酸盐指数、月均气温(MAT)和月度降雨量(MR)与Chl-a浓度存在较好的变化同步性,总氮(TN)和氨氮(NH4+-N)则表现出明显的滞后性.②主成分分析结果表明,太湖水体藻类暴发条件不仅仅是基于N和P等限制性因素,而是发展为TN、NH4+-N、TP和高锰酸盐指数、MR和MAT等多元因素的综合影响.③两种模型经验证比较,基于1999~2019年逐月资料建立的Chl-a浓度的ARIMA模型模拟效果和预测精度明显优于所建立的多元线性逐步回归模型,特别是在考虑主要环境因素作为自变量及优化自变量取值情况下其预测效果得到进一步提升.建立的ARIMA(0,1,1)(0,1,1)模型将有助于太湖藻类暴发的预报和预警,并为及时有效地安排水资源调度及调控等水环境管理措施提供依据.  相似文献   

12.
水温和营养盐增加对太湖冬、春季节藻类生长的影响   总被引:2,自引:1,他引:1  
为探讨水温和营养盐增加对冬、春季节太湖藻类生长和群落演替的影响,研究了不同水温(不增温、12.0、14.0、16.0、18.0、20.0℃)和不同营养盐浓度(低、中、高营养盐浓度)下藻类的生长及优势种群变化. 结果表明:藻类∑ρ(Chla)〔蓝藻、绿藻及硅藻中ρ(Chla)总量,下同〕随着水温的升高呈增加趋势,在20.0℃下∑ρ(Chla)为0.19~12.94μg/L,显著高于其他水温试验组(0.01~6.83μg/L);与较低水温(不增温、12.0、14.0℃)相比,较高水温(16.0、18.0、20.0℃)更能显著促进藻类对氮、磷营养盐的吸收利用. 添加营养盐后,硅藻、绿藻ρ(Chla)的日均值分别为0.52~4.07、0.17~0.52μg/L;湖水中∑ρ(Chla)呈增长趋势,并且浮游植物群落结构的优势种由绿藻转变为硅藻,硅藻ρ(Chla)所占比例从试验初始的50%升至75%~98%, 说明营养盐增加可加大硅藻的竞争优势;而绿藻的生长则可能同时受水温和营养盐共同作用的影响,因此太湖冬、春季节藻类的演替同时受到水温和营养盐的影响.   相似文献   

13.
渭河流域浮游植物功能群与环境因子的关系   总被引:5,自引:0,他引:5       下载免费PDF全文
为分析渭河流域不同水期浮游植物的时空分布特征,于丰水期(2012年9月)和枯水期(2013年4月)对渭河流域浮游植物群落结构和水环境理化特征进行了野外调查,基于Shannon-Wiener多样性指数、Pielou均匀度指数以及MRPP(多响应置换过程)、浮游植物功能群划分、CCA(典范对应分析)等方法,分析浮游植物群落的组成和空间结构特征. 结果表明:丰水期和枯水期渭河全流域分别鉴定出浮游植物165和175种;各采样点浮游植物物种密度平均值分别为1.07×106和1.85×106 L-1;Shannon-Wiener多样性指数平均值分别为2.98和2.74;Pielou均匀度指数平均值分别为0.40和0.37. 全流域共划分出浮游植物功能群23类,其中,丰水期20类,枯水期21类,均以MP功能群物种数最多;代表性功能群为MP、D、Lo和J. MRPP分析结果显示,丰水期和枯水期全流域浮游植物群落结构都具有较明显的空间差异. CCA结果显示,渭河水系丰水期浮游植物群落结构的主要驱动因子为ρ(DO)和ρ(TN),枯水期为流速、ρ(TN)和ρ(CODMn);泾河水系丰水期为ρ(SS)、流速和ρ(TN),枯水期为流速和ρ(TN);北洛河水系丰水期为ρ(TDS),枯水期为ρ(DO)和ρ(TP).   相似文献   

14.
为分析东平湖有色可溶性有机物(CDOM)吸收特性、来源和空间分布的季节变化,分别于2013年8、12月以及2014年3月采集了35个表层水样,分析了各基本水质参数、CDOM吸收系数[a(440)]、比吸收系数[a*(440)]和相对分子量参数M值的分布规律及CDOM吸收系数与水质参数之间的相关关系.结果表明:东平湖CDOM吸收系数a(440)呈现出枯水期 > 丰水期 > 平水期的规律,空间分布与CDOM比吸收系数[a*(440)]相似.M值呈现出丰水期 < 平水期 < 枯水期的变化趋势.丰水期CDOM吸收系数与叶绿素a(Chla)具有显著相关关系;丰、平水期两季CDOM吸收系数与DOC存在显著相关关系.丰水期CDOM同时受外源和内源输入的影响,但以内源输入为主,主要来源于浮游植物降解产物;老湖镇湖区外源特征明显.平水期CDOM亦受内源和外源输入的双重影响,但浮游植物的腐烂降解不是CDOM的主要来源;北部湖区以外源输入为主.枯水期CDOM整体表现出较强的自生源特征,但相关分析显示,浮游植物降解并不是CDOM的主要来源,自生源特征可能与挖沙活动导致的悬浮物浓度增高有关;东南湖区因大汶河输入的影响呈现出较强的外源特征.利用东平湖丰、平水期两季CDOM浓度反演DOC浓度具有可行性.  相似文献   

15.
基于MERIS影像的洪泽湖叶绿素a浓度时空变化规律分析   总被引:1,自引:0,他引:1  
刘阁  李云梅  吕恒  牟蒙  雷少华  温爽  毕顺  丁潇蕾 《环境科学》2017,38(9):3645-3656
叶绿素a(Chl-a)浓度是衡量藻类生物量及评价水体营养状态的重要指标.基于洪泽湖2016年7月、2016年12月共49个实测水质参数与同步光谱数据,验证了5种可应用于MERIS/OLCI数据的Chl-a遥感估算模型(包括波段比值模型、三波段模型、FLH模型、MCI模型以及UMOC模型)在洪泽湖水域的适用性.结果表明,UMOC模型是最适用于洪泽湖水域的Chl-a浓度估算模型,其平均相对误差为32.30%,低于波段比值模型的75.17%,三波段模型的62.44%,FLH模型的45.87%和MCI模型的56.95%.进而利用UMOC模型,结合MERIS数据,获取了洪泽湖2002~2012年Chl-a浓度遥感估算产品,并分析了洪泽湖Chl-a浓度的时空变化规律.洪泽湖Chl-a浓度具有明显的时空差异性.依据水体像元长时间序列月平均Chl-a浓度的差异,将洪泽湖水体分为了区域A、区域B和区域C这3种类型.区域B和区域C水体无明显的变化趋势,区域A则显著增加.与气象因子的相关性分析表明,区域B和区域C年平均Chl-a的波动主要受年降水量的影响,反映了该2个区域Chl-a浓度的变化主要受湖流强度的控制,区域A年平均Chl-a浓度的变化与年平均风速呈显著负相关性,风速下降的气候大背景可能会加重这一区域的富营养化程度,威胁南水北调的水质安全.此外,在汛期(7~9月)洪泽湖水体Chl-a浓度与离淮河入湖口的距离呈显著的正相关关系,证明了这一时期淮河对洪泽湖藻类浓度具有明显的抑制作用.  相似文献   

16.
巢湖溶解性有机物时空分布规律及其影响因素   总被引:4,自引:2,他引:2  
为研究巢湖溶解性有机物(dissolved organic matter,DOM)的时空分布规律及其影响因素,于2013年4月至2014年4月每月在巢湖3个不同湖区17个点位采集表层水样,测定了水体溶解性有机碳(dissolved organic carbon,DOC)和溶解性有机氮(dissolved organic nitrogen,DON)浓度.结果表明,东部、中部和西部这3个湖区DON浓度具有显著差异(P0.01,n=13),这可能与西湖区入湖河流的外源输入以及DON的可利用性有关.水华期间,水体总氮总磷比、总溶解性氮磷比以及溶解性无机氮(dissolved inorganic nitrogen,DIN)与溶解性活性磷(soluble reactive phosphorus,SRP)比值迅速降低,其中西湖区DIN/SRP在2013年8月降至5±7,表明水体出现氮限制.此外,DON浓度迅速降低,西部湖区叶绿素浓度与DON显著负相关(r=-0.265,P0.05,n=91),表明在氮限制条件下,DON具有一定生物可利用性.DOC浓度不存在显著空间差异,水温是控制这3个湖区DOC浓度变化的重要因素.东部和中部湖区DOC浓度还受叶绿素和硝态氮浓度的影响.此外,巢湖DOC/DON变幅较大,由于含氮化合物更易降解,因此DON是影响碳氮比值的主导因子,是表征DOM可利用性的重要组分.  相似文献   

17.
郭攀  孙涛  杨光  马明 《环境科学》2018,39(12):5473-5479
森林生态系统的汞产量可以用森林湖泊或水库的动态变化来表征.而且,下游汞浓度的变化也可以在一定程度上反映森林生态系统汞的输出.通过对四面山大洪湖上游、中游、下游丰水期与枯水期汞的分布与沉积物剖面的分析发现:大洪湖上覆水中总汞浓度在丰水期显著增加(丰水期平均值4. 33 ng·L~(-1),枯水期1. 85 ng·L~(-1)),在下游尤为明显,其总汞和甲基汞的含量明显高于其他类型湖泊,但小于受到污染的湖泊,说明四面山常绿阔叶林具有一定"汞源"的特征,同时沉积物也是大洪湖上覆水中甲基汞和无机汞的输入源;甲基化过程主要发生在沉积物的表层,丰水期时甲基化过程更活跃;在丰水期时,更有利于汞和甲基汞从沉积物固相进入沉积物液相,从而进入上覆水中.  相似文献   

18.
为识别西洞庭湖长江三口分流来水与洞庭湖水系河流来水磷元素的污染特征,于2016年1-12月在西洞庭湖的主要入湖河流松滋河(三口分流河道)、沅江和澧水(洞庭湖水系河流)开展了水文水质同步调查,研究了入湖河流中磷浓度和组成的时空分布特征,剖析了水文因素对磷污染特征的影响,探究了磷的来源结构.结果表明,3条主要入湖河流流量平均值表现为沅江(1 718 m3/s)>松滋河(935 m3/s)>澧水(884 m3/s),ρ(TP)平均值表现为沅江(0.070 mg/L) < 澧水(0.077 mg/L) < 松滋河(0.138 mg/L);沅江的年均入湖磷通量(4 177.26 t/a)对于西洞庭湖磷污染而言仍起主导作用;沅江、澧水与松滋河的磷的形态以DTP(溶解态磷,占比为78.56%~90.19%)为主,并且松滋河DTP占比(90.19%)显著高于沅江和澧水(78.56%~83.34%).进一步的分析显示,3条河流的磷污染状况受水文因素影响显著,沅江和澧水磷浓度表现为汛期高于非汛期,磷的主要来源为非点源;松滋河的磷浓度表现为非汛期高于汛期,汛期主要取决于长江来水状况,非汛期主要取决于松滋口以下区间的点源污染状况.研究显示,3条河流磷浓度和形态均具有时空差异性,并且年内变化规律差异较大.   相似文献   

19.
渭河陕西段浮游植物群落结构时空变化与影响因子分析   总被引:1,自引:0,他引:1  
浮游植物是水生态系统的初级生产者,其群落结构与水环境密切相关.为了解渭河陕西段浮游植物群落结构时空格局及其与环境因子的关系,更好地进行水资源和水生态保护,于2017年9月—2018年4月在丰水期和枯水期对该河段设定的9个研究断面,27个采样点位进行浮游植物群落结构和水环境因子调查监测,共检出浮游植物8门69种,群落结构分析表明,枯水期浮游植物种类数高于丰水期.浮游植物细胞密度和生物量变化分别为84.9×104~3868.3×104 cells·L-1、0.268~20.978 mg·L-1,丰水期平均密度(1490.0×104 cells·L-1)和平均生物量(7.864 mg·L-1)显著大于枯水期(354.8×104 cells·L-1、1.152 mg·L-1).优势种分别为6种和8种,主要以绿藻门和硅藻门为主.浮游植物Shannon-Wiener指数(H'')、Pielou均匀度指数(J)、Margalef丰富度指数(d)均表明丰水期浮游植物多样性高于枯水期,9个采样断面的水质总体评价呈现出无污染或轻度污染至中轻污染状态.典范对应分析(CCA)排序结果表明,影响枯水期浮游植物群落结构的主要环境因子为总磷(TP)、pH和总溶解性固体(TDS),TP和高锰酸盐指数(CODMn)是影响丰水期浮游植物群落结构的主要环境因子.  相似文献   

20.
考虑到太湖水华暴发过程中水质参数(如营养盐或水体理化参数)对浮游植物增殖的滞后效应,利用有滞后变量参与的格兰杰因果关系检验和向量自回归模型,分析了太湖梅梁湾湖区2000年~2012年的监测数据,探讨了湖泊水质参数对于水华暴发的影响和定量关系.结果发现,表征浮游植物生物量的叶绿素a(Chl-a)浓度与总磷(TP)、氮磷比(N/P)、水温(WT)之间存在长期的均衡关系,格兰杰因果关系模型和向量自回归模型(VAR)的结果显示,水体中TP浓度、N/P和WT是Chl-a含量变化的格兰杰原因,上述结果提供了湖泊水质参数与蓝藻生物量的定量关系,在其他水质参数保持不变的情况下,约1%湖泊TP含量、N/P和水温的变化分别造成0.97%、0.078%和0.55%的浮游植物生物量的变化.本研究为水华暴发研究过程中水质参数的定量化影响提供一个新颖的视角,考虑了时间滞后变量的时间序列分析方法也可以加深对水华暴发过程的理解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号