首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
滇池二维分层水质模拟研究   总被引:4,自引:0,他引:4  
将三维问题“二维化”的分层迭代计算方法引入滇池水质模拟中,建立了湖泊二维分层水质模型,对滇池流场和总氮浓度场分两层进行了模拟计算,计算结果表明,该模型应用于滇池是成功的。  相似文献   

2.
针对钱塘江上游段的水流特性和水质特点,建立了钱塘江(新安江大坝-富春江大坝段)一维河网水动力、水质模型,选取2010年9月7-10日实测流量、水质数据对模型进行了验证,结果基本一致。利用该模型预测了不同方案条件下主要取水口及水环境功能区边界的水质变化,分析了影响水质的主要因素,为水环境质量改善提供了决策依据。  相似文献   

3.
滇池水体中叶绿素A含量的遥感定量模型   总被引:11,自引:0,他引:11  
本研究利用滇池1999年4月14日陆地卫星TM数据与准稿步全湖面监测资料,对滇池全湖水体叶绿素A含量与不同波段遥感值的关系进行了关联度分析,并据此建立了TM图像感叶绿素A水质模型,该模型被成功地应用于滇池水体叶绿素A的遥感动态监测。  相似文献   

4.
滇池流域土地利用变化与入湖河流水质关系研究   总被引:1,自引:0,他引:1  
以昆明滇池东南岸流域为例,利用逐步回归模型分析了流域土地利用类型与流域湖泊水质之间的相关关系,发现水质污染指标与耕地始终呈现正相关,与林地始终呈现负相关,与城乡用地始终呈现负相关,对昆明滇池东南岸流域而言,耕地是入湖河流水质污染的主要来源,其污染贡献掩盖了城乡用地的贡献。  相似文献   

5.
滇池水环境容量模型研究及容量计算结果   总被引:7,自引:0,他引:7  
水环境容量的研究目的 ,其一是为水污染控制的技术路线提供科学依据 ;其二是为水污染控制的管理制度提供技术支持。在水环境容量研究中 ,关键的技术问题是容量模型的选定。通过研究 ,选取Vollenweider模型 (W =S×A×Z [σ +Q/V])和完全混合湖泊非保守污染水质模型 (W =Cs [Q +KV])分别为滇池水环境中N、P和CODMn、BOD5的容量模型 ,计算出了滇池相应的水环境容量。  相似文献   

6.
河流水质系统灰色模型的识别、模拟和应用   总被引:6,自引:1,他引:6       下载免费PDF全文
 借助于灰色系统理论的思想和方法可以构造河流水质灰色模型,根据实测水质资料可以识别出河流水质灰色模型中的最优灰参数,在此基础上,可以对河流水质系统进行灰色模拟。灰色模拟考虑了实际河流水质系统中客观存在的不确知因素和偶然因素影响。本文概述了河流水质灰色模型的构造、河流水质灰色模型的研究意义、河流水质灰色模型的灰参数识别、河流水质系统的灰色模拟及其在四川沱江水质系统模拟中的应用。  相似文献   

7.
为研究滇池的叶绿素a含量与气象条件、水质因子的关系,利用滇池地区气候资料检测数据和滇池草海水质理化指标监测数据,运用多层线性模型来分析叶绿素a与总磷、总氮、透明度、生化需氧量、溶解氧等水质因子及光照、温度、风速、降水等气象条件的关系。模型分析结果表明:(1)水质因子中总磷与滇池草海叶绿素a含量正相关,而总氮、透明度分别与叶绿素a负相关;(2)气象条件中总辐射、降水量对滇池草海叶绿素a含量影响显著。滇池草海中总氮已经超过常规研究中对叶绿素a限制的上限,已经完全不再限制叶绿素a的生长。因此滇池草海水体可能是磷限制性湖泊。因此现阶段滇池富营养化的控制以控制总磷水平为主,同时提高水体透明度,短期控制中可以考虑采用人工降雨等气象控制予以辅助。  相似文献   

8.
以滇池常规的水质监测数据为基础,运用因子分析法对滇池1999-2008年的水质进行综合评价,并以水质综合评价得分作为监测点位的空间属性值,采用空间插值法定量分析10年间滇池水质的时空变化特征。研究期间内,滇池水质总体呈现不断恶化的趋势,氮磷污染一直是滇池的主要污染类型。滇池南部区域水质一直优于北部和中部区域,尤其是草海和外海交界区域的水质在全湖是最差的。南部片区水质在整个滇池最好,但也呈现出不断恶化的趋势。  相似文献   

9.
基于EFDC模型的滇池水质模拟   总被引:7,自引:0,他引:7  
陈异晖 《云南环境科学》2005,24(4):28-30,46
从应用层面介绍EFDC模型的主要编程原理和数据结构,以及主控文件、初始化数据、气象和负荷数据以及模型输出的内容和结构。利用1988、1989年的负荷数据和观测资料,对滇池水质进行了模拟。结果表明,模型的水动力模块模拟结果与实际情况较接近,水质模块的模拟结果尚可接受,模型实用程度的提高有赖于基础数据的积累。  相似文献   

10.
湖泊暴雨径流水质模拟研究   总被引:12,自引:1,他引:12  
根据暴雨径流污染物浓度变化特点,采用最小二乘法对暴雨期间污染源各监测数据进行回归分析处理,对湖底糙率采用自动调整处理,建立了湖泊暴雨径流水质模型.对滇池湖泊某次暴雨过程的总磷和总氮进行了模拟研究,计算结果表明,该模型应用于滇池湖泊是成功的.  相似文献   

11.
极端降水是流域水文水质变化的重要驱动事件.本研究使用RclimDex、随机森林回归和Mann-Kendall等方法分析了滇池流域多年极端降水指标变化特征及其对滇池湖体水质的影响,评估了不同极端降水指标、经济社会指标、人为氮磷输入量、调水量等驱动因子对滇池TP、TN浓度的重要性.结果表明:近67年间,滇池流域的总降水量没有显著变化,极端降水的频次及强度显著降低,但由于极端降水对流域总降水量的贡献较大,流域面临的极端降水风险较大.近20年来,滇池湖体TP、TN浓度呈显著降低趋势,水质显著好转,但极端降水将持续影响滇池水质,并且,在人为氮磷输入与极端降水变化的双重作用下,滇池水质持续好转的压力较大.  相似文献   

12.
滇池水污染控制系统规划   总被引:3,自引:0,他引:3       下载免费PDF全文
提出了滇池水污染控制系统规划模型,对污水集中治理措施,厂内治理措施与面源治理措施同时进行了优化,得出了滇池流域综合治理的优化方案,为滇池水污染控制提供了科学依据。  相似文献   

13.
精细识别湖泊水质的时空变化特征是确定流域污染调控措施的基础.贝叶斯方差分析具有灵活的模型结构,可直接表征变量的时空动态特征.本文据此提出了基于该方法的湖泊水质时空变化特征识别的方法框架,研究了异龙湖稳态转换条件下富营养化指标的变化特征和滇池外海特征污染物达标率的时空变化2个案例,验证了该方法在总体服从正态分布和二项分布时的适用性.针对参数可交换性假设被忽视的问题,本文提出了一种基于模型选择准则的判定方法,并将其应用于滇池案例中.结果表明:(1)相对于清水稳态,异龙湖在浊水稳态时3种富营养化指标浓度更高,且年际方差所占总方差比例减小;(2)滇池外海总氮浓度超标率由2007—2013年间的40%左右降到2014—2016年间的10%左右,且波动性降低.随着监测数据的积累和监测时空精度的增加,贝叶斯方差分析在湖泊水质时空变化特征识别中具有广阔的应用前景.  相似文献   

14.
滇池大清河河口二维水环境模型研究与应用   总被引:4,自引:1,他引:3       下载免费PDF全文
以滇池大清河河口为对象,根据其水动力特征,建立了二维水环境模型.其中水动力模块采用交替方向迭代法进行数值求解,水质模块中参数的取值通过2006年和2007年现场原位实验和实验室模拟实验获得,并利用2007年的实际监测数据对模型进行率定和验证.运用率定的模型,模拟了生态修复工程实施后大清河人湖控制断面的水质变化情况,以期为治理方案的优化和效果评价提供参考.  相似文献   

15.
基于绝对主成分-多元线性回归的滇池污染源解析   总被引:11,自引:0,他引:11       下载免费PDF全文
定量解析污染源是湖泊流域水环境管理的重要基础.基于滇池草海和外海多年水质监测数据,采用主成分分析(PCA)方法识别了主要水质指标的污染源类型,利用绝对主成分-多元线性回归模型(APCS-MLR)得到不同污染源对水质的贡献程度.结果表明,草海主要的污染源有农业面源、城市面源和内源3类,外海的主要污染源是农业面源、城镇生活污染源、城市面源和内源4类.与河流水污染源解析结果不同,底泥内源与气象因子对滇池主要水质指标的影响较大.  相似文献   

16.
干季滇池水质与盘龙江水质的研究   总被引:1,自引:0,他引:1  
通过对滇池水域和盘龙江下游水质进行采样,分析了水中pH值、浊度、溶解氧(DO)、电导率、叶绿素、化学需氧量(COD)、总磷(TP)、氨态氮(NH3-N)等8个指标。研究表明,滇池近岸水域中pH值偏碱性、浊度大、叶绿素含量和化学需氧量高、总磷量高、溶解氧过饱和;在滇池外海水域,除溶解氧、叶绿素较高外,其余指标大多在水质标准(Ⅲ类)范围内;而在盘龙江下游区域内,水质差,各项指标都超过地表水Ⅴ类标准,这一事实可能会加重滇池的水体污染。  相似文献   

17.
在深入分析滇池水质现状、污染来源、水质演变、污染成因、治理现状及存在问题的基础上,探索滇池水污染源头减排、过程控制、末端治理相结合的全过程治理模式,实现统筹兼顾、系统考虑、多管齐下、长期综合治理,并提出适应新形势需求的滇池水污染综合治理对策.以官渡区为具体实践区,探寻通过“点、线、面”结合,全面开展滇池流域水污染防治,最终实现滇池水体保护,湖泊生态系统良性循环,经济、社会、环境持续协调发展的总体目标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号