首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
收集玉米、水稻和小麦秸秆模拟露天燃烧排放的颗粒物,分析样品中碳质组分、水溶性离子(共9种)和无机元素(共17种),研究其排放因子及特征比值。结果表明:秸秆燃烧OC的排放因子远高于EC,二者范围分别为169~1 707和91~300 mg/kg。总水溶性离子排放因子范围为162~840 mg/kg。K~+、Na~+、NH_4~+和Cl~-是水溶性离子的主要组分,占水溶性离子总排放因子的80%~92%。K、Ca、P和Mg 4种生长元素排放因子之和占秸秆燃烧排放颗粒物中无机元素的98%~99%。Zn、Pb、Cu为秸秆燃烧排放颗粒物中排放因子较高的重金属元素,这些重金属对人体健康的影响不可忽视。此外,研究发现OC/EC可以用来区分秸秆燃烧与香烟燃烧、重型柴油车和草类燃烧源,K~+/OC可以用来区分秸秆燃烧与居民燃木取暖,K/Ca可以用来区分秸秆燃烧与交通污染源。  相似文献   

2.
生物质露天焚烧及家庭燃用的多环芳烃排放特征研究   总被引:4,自引:0,他引:4  
农村地区生物质燃烧排放是大气多环芳烃(PAHs)的重要来源之一.本研究利用建立的烟尘罩稀释通道采样系统,对我国典型的生物质燃烧方式—水稻、玉米、花生、大豆秸秆的家庭炉灶燃烧,并对水稻、玉米、花生秸秆以及荔枝树、大叶榕、小叶榕等落叶的露天焚烧进行实验室模拟,实测了秸秆野外焚烧、落叶野外焚烧、秸秆炉灶燃烧等3种典型生物质燃烧类型排放的气相及颗粒相PAHs的排放因子.结果表明,本研究生物质露天焚烧PAHs排放因子高于大部分已有实验结果,秸秆炉灶燃烧PAHs排放因子亦高于大部分排放清单采用值.3类燃料燃烧排放PAHs的谱分布相近,均以中低环PAHs为主,中高环(4~6环)PAHs比例为22.2%~28.8%.采用某单一数值作为某类源PAHs特征比的取值,并将其运用于大气PAHs的来源解析可能会造成偏差.  相似文献   

3.
黄帅  黄欣怡  吴水平  胡清华  陈晓秋 《环境科学》2015,36(10):3573-3581
选择水稻、小麦、玉米及棉花秸秆与马尾松枝,采集模拟燃烧时排放的PM2.5,分析PM2.5中多环芳烃(PAHs)和糖醇类化合物的含量,获得PM2.5及负载的两类化合物的排放因子;采用500 W汞灯直接照射收集了PM2.5的尘膜,获得了中、高环PAHs及左旋葡聚糖的光解动力学.结果表明,PM2.5的排放因子介于(2.26±0.60)g·kg-1(马尾松枝)~(14.33±5.26)g·kg-1(玉米秸秆)之间;19种PAHs的排放因子介于(0.82±0.21)mg·kg-1(马尾松枝)~(11.14±5.69)mg·kg-1(棉花秸秆)之间,且以4环类PAHs所占比例最高,介于51%~71%之间(其中马尾松枝燃烧时惹烯的排放因子最大);9种糖醇类化合物的排放因子范围为(52.34±50.16)mg·kg-1(水稻秸秆)~(238.81±33.62)mg·kg-1(小麦秸秆),且都以左旋葡聚糖占绝对优势(72%~96%).光照模拟显示,目标化合物的光照损失都遵循拟一级动力学,其中≥4环的PAHs的光解速率常数随着尘膜中PAHs的负载量增大而减小,来源特征比值Flua/(Flua+Py)和Ip/(Ip+Bg P)相对稳定,而左旋葡聚糖的光解速率常数为0.004 5 min-1,与苯并[a]蒽的光解速率常数(0.004 1~0.005 0 min-1)接近.  相似文献   

4.
民用燃料燃烧排放PM2.5和PM10中碳组分排放因子对比   总被引:7,自引:0,他引:7  
孔少飞  白志鹏  陆炳 《中国环境科学》2014,34(11):2749-2756
在实验室中模拟民用燃料在家庭炉灶中的燃烧,应用稀释通道系统采集颗粒物,获得玉米秸秆、薪柴、蜂窝煤和块煤四种常用民用燃料燃烧排放PM10,PM2.5及载带碳组分的排放因子.结果表明,民用燃料燃烧排放的颗粒物以细颗粒为主, PM2.5占PM10的70%~90%.颗粒物排放因子最大的为块煤,其PM2.5和PM10的排放因子分别为9.837和11.929g/kg,分别是蜂窝煤的12.6和13.7倍;玉米秸秆和薪柴PM2.5和PM10的排放因子稍低于块煤,为7.359~10.444g/kg.4种燃料燃烧OC排放因子块煤最高,其在PM2.5和PM10中分别为5.29和5.19g/kg.薪柴燃烧EC的排放因子最高,其在PM2.5和PM10 中的排放因子分别为1.065和1.126g/kg.块煤两种粒径上EC的排放因子略低于薪柴.蜂窝煤EC的排放因子最低,比薪柴低300倍左右,玉米秸秆EC的排放因子也要比薪柴低10倍左右.碳组分是块煤,秸秆,薪柴排放颗粒物的主要成分,其含量在40%~60%之间,该值比蜂窝煤高3倍.四种燃料对应的OC/EC比值差异很大,薪柴和块煤燃烧排放颗粒该值为3~6,秸秆和蜂窝煤燃烧排放颗粒其值高达30~50.  相似文献   

5.
秸秆露天焚烧典型大气污染物排放因子   总被引:2,自引:0,他引:2  
利用烟气污染物稀释采样系统,基于实际测试,针对玉米、小麦、花生和棉花4种农作物秸秆开展露天焚烧排放大气污染物采集和分析.利用修正燃烧效率区分燃烧状态,根据碳平衡法计算烟气中颗粒物和气态污染物排放因子.结果表明,4种秸秆露天焚烧CO、SO2、NOx和CH4平均排放因子分别在7.39~92.4g/kg、0.11~0.89g/kg、0.72~3.86g/kg和0.2~5.45g/kg之间,PM2.5平均排放因子在1.48~13.29g/kg之间.OC和EC的质量分别占PM2.5全部质量的27.7%~54.3%和4.4%~17.1%,是PM2.5的主要组成成分.污染物排放主要来自混合燃烧状态,焖烧状态排放污染物浓度相对较高.随着含水率升高,焖烧过程增强显著,CO、CH4、PM2.5和OC的排放因子升高,其中PM2.5排放量增高主要是由OC排放占比升高导致.  相似文献   

6.
针对一台轻型柴油机,采用国Ⅳ柴油,在不使用和使用后处理装置的条件下,进行ESC循环工况(分别记为ESC-0、ESC-DP)和ETC循环工况(分别记为ETC-0、ETC-DP)下的发动机台架测试.每次测试用一对滤膜采集颗粒物,采样前后分别称重以确定颗粒物质量,进而计算排放因子.用气相色谱-质谱联机(GC-MS)分别分析每张滤膜上颗粒物的多环芳烃(PAHs)组分.ESC-0、ESC-DP、ETC-0、ETC-DP的颗粒物排放因子分别为0.12,0.05,0.48,0.16 g/(k W?h);相应的PAHs排放因子分别为69,35,174,76μg/(k W?h).后处理分别使颗粒物和PAHs减排56%~68%和49%~56%.总PAHs中,三环PAHs占比重最大(64%±9%).PHE在总PAHs中占比重最大(54%±9%).PAHs的分布与其物理化学特性、柴油中的芳烃含量有关.PAHs特征比值FA/(FA+PY)为0.37~0.51.  相似文献   

7.
黄淮平原农田土壤中多环芳烃的分布、风险及来源   总被引:9,自引:0,他引:9       下载免费PDF全文
对227个黄淮平原农田表层土壤样品中16种多环芳烃(PAHs)含量进行了调查,并对其致癌风险和来源等进行了分析.结果表明,有15种PAHs被普遍检出,各单体检出率在23.3%~100%之间(苊烯未检出).土壤中PAHs总量(∑PAHs15)为33.44~1246μg/kg,平均值为152.4±166.2μg/kg,且以4环及4环以上PAHs为主,其中16.7%的样品中PAHs含量达到了污染水平(>200μg/kg),与国内外其他地区相比,黄淮平原农田土壤中PAHs含量处于相对较低水平.黄淮平原农田土壤7种致癌性PAHs毒性当量浓度(TEQBap)占总毒性当量浓度的98.27%,其中苯并(a)芘(Bap)潜在致癌风险最大.同分异构体比值法和主成分分析结果表明黄淮平原农田土壤中PAHs的主要来源是汽油、柴油高温燃烧、以及煤和秸秆燃烧.相关性分析表明有机质含量与∑PAHs15及PAHs单体含量具有显著相关性,表明有机质是影响PAHs在土壤中含量、空间分布及归趋的一个重要因素.  相似文献   

8.
大气颗粒物源成分谱可以表征源排放颗粒物的理化特征,为受体模型开展来源解析研究提供基础数据.餐饮油烟排放是室内外环境大气污染的来源之一,当前餐饮源排放PM2.5的化学成分谱仍然缺乏.该研究分别在成都市、武汉市和天津市采集了29组6种餐饮源(居民烹饪、火锅店、烧烤店、职工食堂、中餐馆、商场综合餐饮)排放的PM2.5样品,分析无机元素、离子、碳、多环芳烃(PAHs)等化学组分,并构建了餐饮源排放颗粒物化学成分谱.结果表明:①餐饮源排放PM2.5化学成分中的主要组分为OC(有机碳)、EC(元素碳)、Ca、Al、Fe、NH4+、SO42-、NO3-、Na+、K+、Mg2+和Cl-,其中w(OC)最高,为41.67%~57.91%.②餐饮源排放PM2.5的PAHs中,3环和4环占比较高,其中芴(Flu)、菲(Phe)、荧蒽(Fla)、芘(Pyr)的质量分数相对其他物质较高.研究显示:餐饮源排放PM2.5中OC/EC约为15.99~67.61,在一定程度上可以用来表征餐饮源排放;Fla/(Fla+Pyr)和InP/(InP+BghiP)多集中在0.45~0.55之间,或可作为标识餐饮源的特征比值.   相似文献   

9.
长三角地区秸秆燃烧排放因子与颗粒物成分谱研究   总被引:26,自引:12,他引:14       下载免费PDF全文
为获取长三角地区秸秆燃烧污染物排放因子及其颗粒物成分谱,利用自行设计开发的开放式燃烧源排放测试系统,选取小麦、水稻、油菜、豆秸和薪柴等5类典型作物秸秆,分别采用露天焚烧和炉灶燃烧2种燃烧方式,实测其气态污染物和颗粒物排放特征.结果表明,露天燃烧各类秸秆的CO、NOx和PM2.5平均排放因子约为28.7、1.2和2.65 g·kg-1,由于炉灶氧含量相对较低,燃烧不充分,其污染物排放因子总体高于露天燃烧,分别为81.9、2.1和8.5 g·kg-1.各类秸秆中,油菜的排放水平相对较高.含碳组分(OC和EC)是生物质秸秆燃烧产生PM2.5的主要组成,在露天燃烧中OC和EC的质量分数分别占(38.92±13.93)%和(5.66±1.54)%;炉灶燃烧中OC和EC分别为(26.37±10.14)%和(18.97±10.76)%.Cl-、K+等水溶性离子也有较大贡献,在露天燃烧中分别为(13.27±6.82)%和(12.41±3.02)%;在炉灶燃烧中分别为(16.25±9.34)%和(13.62±7.91)%.小麦、水稻、油菜和豆秸等作物秸秆露天燃烧排放颗粒物的K+/OC值分别为0.30、0.52、0.49和0.15,这些特征值可用于判断长三角区域空气质量受秸秆燃烧排放影响的程度,为大气污染来源解析提供直接的判断依据.  相似文献   

10.
分析了密云水库沉积柱中16种美国EPA优先控制的多环芳烃(∑PAH16)的垂直分布状况,并对其来源和生态风险进行了分析和评估,目的是了解密云水库近年来PAHs污染的变化趋势.从底层16 cm至表层,沉积物中∑PAH16的含量在618.5~1 087.9 ng/g之间,且基本上一直呈上升的趋势.沉积物中多环芳烃的组成以3环的菲和芴为主,它们的含量分别为236.1~417.9 ng/g和91~130.8 ng/g,二者共占沉积物中多环芳烃总量(∑PAH16)的47.2%~58.1%.然而,高环数(5~6环)多环芳烃的比例近年来有逐渐增加的趋势.多环芳烃的组成特征显示密云水库的沉积物中多环芳烃主要来源于煤和木材的低温燃烧.然而,Flu/Flu+Pyr和INP/INP+BghiP比值的垂直变化说明,近年来机动车辆尾气排放的多环芳烃有增加的迹象.风险评价的结果显示:除了芴和菲之外,密云水库沉积物中的多环芳烃对生态环境的影响目前还处于较低风险水平.  相似文献   

11.
青岛近岸表层海水中PAHs的分布特征及物源初步解析   总被引:3,自引:3,他引:0       下载免费PDF全文
采用固相萃取-高效液相色谱-荧光检测法分析了青岛近岸海水中15种PAHs的质量浓度.结果表明,海水中PAHs的总量变化范围为8.23~272.02 ng.L-1,河口区质量浓度最高,远离城区的清洁区质量浓度最低.就组成特征而言,2~3环PAHs是其主要组分,占总量的质量分数为52.2%~93.8%,4~6环PAHs占总量的质量分数为6.2%~47.8%.表层海水中PAHs总浓度和DOC浓度之间有较好的相关性,相关系数为0.944 3.青岛湾表层海水中PAHs浓度组成相对稳定.利用Fl/(Fl+Py)和An/(An+Ph)分析表层海水中PAHs的来源,结果表明除清洁区表层海水中PAHs主要来源于煤和木材燃烧外,青岛近岸海水中的PAHs主要来源于石油制品和石油燃烧.  相似文献   

12.
崔学慧  李炳华  陈鸿汉 《环境科学》2008,29(7):1806-1810
为查明苏南太湖平原区浅层地下水水质状况,在苏南北部(C区)、东北部(W区)和东部(S区)3个地区共采集56组地下水样,利用气相色谱仪分析样品中16种优先控制的多环芳烃组分浓度,并运用谱系聚类分析法和分子比例法探寻多环芳烃来源.结果表明,检出的多环芳烃中以3~4苯环组分为主,总多环芳烃浓度最高达32.45μg/L,均值为4.42μg/L.多环芳烃分布具有区域分布特征,高值点多出现在工业区附近.分子比值法表明,研究区浅层地下水中多环芳烃来源是化石燃料和石油源叠加的结果.谱系聚类分析法结果表明, C区各采样井的苯并(k)荧蒽异常浓度控制该区的聚类结果;W区各采样井的苯并(a)蒽异常浓度控制着该区聚类结果;S区各采样井的苯并(b)荧蒽异常浓度控制该区的聚类结果.在0.05水平上, C区的荧蒽、苊、亚二氢苊、菲、苯并(a)芘间的Pearson相关系数达到0.680~0.712;W区的苯并(g,h,i)芘、苯并(a)蒽和苯并(a)芘间的Pearson相关系数到达0.724~0.773;S区的亚二氢苊和芴的Pearson相关系数为0.659.可以推测出各区所列的这几种多环芳烃组分很可能分别来自于各区内同一类型污染源.  相似文献   

13.
Polycyclic aromatic hydrocarbon in urban soil from Beijing, China   总被引:11,自引:2,他引:11  
Polycyclic aromatic hydrocarbons (EPA-PAHs) in the urban surface soils from Beijing were determined using gas chromatography and mass spectrometry (GC-MS). It is significantly complementary for understanding the PAHs pollution in soil of integrated Beijing city on the basis of the information known in the outskirts. The total concentration of 16 EPA-PAH was from 0.467 to 5.470 μg/g and was described by the contour map. Compound profiles presented that the 4-, 5- and 6-ring PAHs were major compositions. The correlation analysis showed that PAHs have the similar source in the most sampling sites and BaP might be considered as the indicator of PAHs. Characteristic ratios of anthracene (An)/(An+ phenanthrene (Phe)), fluoranthene (Flu)/(Flu/ pyrene (Pyr)) and benzo[a]pyrene (BaP)/laenzo[g,h,i]perylene (BghiP) indicated that the PAHs pollutants probably mainly originated from the coal combustion and it was not negligible from vehicular emission. The level of PAHs in our study area was compared with other studies.  相似文献   

14.
上海市表层土壤中多环芳烃的分布特征与源解析   总被引:9,自引:0,他引:9       下载免费PDF全文
应用气相色谱-质谱联用仪(GC-MS)对上海市80个表层土壤样品中16种优控多环芳烃的浓度进行了测定,分析了上海市土壤中PAHs的含量分布特征,并利用同分异构体比值、主成分分析方法对表层土壤中的PAHs进行了源解析.结果表明,80个样点PAHs的含量在0.12~24.5μg/g之间,呈现出郊区>市区>农村的梯度变化,市区内不同功能区采样点呈现出交通区>文教区>公园绿地>商业区>住宅区的梯度变化. PAHs组成以4环和5环为主,平均含量分别占∑PAHs的49.2%和27.0%,其次为3环和6环,分别占∑PAHs的14.8%和6.6%,最低为2环PAHs,仅占2.4%,单体PAHs化合物以荧蒽、芘、苯并芘为主.源解析表明,表层土壤中PAHs的主要来源是燃烧源,主要是石油燃烧.  相似文献   

15.
珠江广州段沉积物中PAHs生态风险的蒙特卡洛模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
以珠江广州段24个采样站位表层沉积物的实测16种多环芳烃(PAHs)浓度为基础资料,采用基于Logistic混沌迭代序列改进的蒙特卡洛算法对珠江广州段沉积物中PAHs的生态风险发生概率进行了定量分析.研究结果表明:PAHs风险排序从大到小依次是:菲>芘>荧蒽> >苯并[a]蒽>苯并[a]芘>二苯并[a,h]蒽.菲、芘和荧蒽引发水生生态风险概率较大,应重点关注.除菲外,其余6种PAHs暴露浓度对生态风险发生概率的贡献率均超过90%,可见PAHs在本区域环境中的风险大小主要取决于其暴露量.  相似文献   

16.
为了掌握滩涂红树林种植-养殖耦合系统中水产品中多环芳烃的污染情况,保证系统中水产品的品质和食用安全,采用高效液相色谱仪检测了系统中秋茄、桐花树和木榄等养殖塘罗非鱼、鲻鱼和牡蛎体内的13种多环芳烃(polycyclic aromatichydrocarbons,PAHs)[Fluorene(Flu)、Phenanthrene(Phe)、Anthracene(Ant)、Fluoranthene(Fla)、Pyrene(Pyr)、Benz[a]anthraces(BaA)、Chrysene(Chr)、Benzo[b]fluoranthene(BbF)、Benzo[k]fluoranthene(BkF)、Benzo[a]Pyrene(BaP)、Dibenzo[a,h]anthercene(DahA)、Benzo[g,h,i]perylene(BghiP)、Indeno[1,2,3-c,d]pyrene(InP)],分析研究其污染水平并进行食品安全评价.结果表明,牡蛎体内的TPAHs含量最高,干重浓度范围在89.79~98.49μg.kg-1之间;鲻鱼次之,干重浓度范围在25.97~34.64μg.kg-1之间;罗非鱼的TPAHs含量最低,干重浓度范围在12.31~14.41μg.kg-1之间.3环PAHs是主要组成成分,占TPAHs的41.58%~83.35%.脂肪含量是影响不同种类水产品间TPAHs浓度水平的因素.与国内其它地区相比,研究区域水产品内PAHs污染处于轻度的污染水平.3类水产品的湿重等效ΣBaP浓度值在0.068 9~1.037 3μg.kg-1之间,符合欧盟对苯并[a]芘的限值要求.研究区域水产品内PAHs在安全食用范围内.  相似文献   

17.
多环芳烃(PAHs)在大气中的相分布   总被引:37,自引:7,他引:37  
通过对广州市老城区空气中多环芳烃的研究表明 ,该区多环芳烃的污染相当严重 ,不同季节测定的多环芳烃总量差别不大 ,但颗粒相多环芳烃在春季占的比例 (44 8% )要高于夏季 (9 4 % ) .气相中主要以芴、菲、甲基菲、荧蒽、芘等低环数的多环芳烃为主 ,而高于四环的多环芳烃主要是分布在颗粒相中 ,苯并 (ghi)是最主要的颗粒相多环芳烃物质 .  相似文献   

18.
采用恒能量同步荧光法研究了龙岩市区不同功能区冬、春季大气飘尘中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs进行了污染评价。结果表明,龙岩市区各功能区大气飘尘中PAHs总量在278.95~718.13ng/m3,且冬季高于春季。根据荧蒽与芘质量浓度比值,可判断冬春季市区内PAHs主要来源于汽车尾气和燃煤污染。采用苯并[a]芘(BaP)及苯并[a]芘等效致癌浓度(BaPE)来评价3个功能区大气飘尘中PAHs的污染状况,冬季3个功能区苯并[a]芘浓度均超过国家标准(BaP,10ng/m3),且PAHs基本上均严重超标。  相似文献   

19.
In this study sediment samples were collected from 13 sites of Haihe River in Tianjin City, China, sixteen of priority polycyclic aromatic hydrocarbons (PAHs) listed in USEPA were analyzed by means of GC-MS. The total concentrations of PAH ranged from 774.81 to 255371.91 ng/g dw, and two to four rings of PAHs were dominant in sediment samples. Molecular ratios, such as phenanthrene/anthracene, fluoranthene/pyrene and low-molecular-weight PAH/high-molecular-weight PAH, were used to study the possible sources of pollution. It indicated a mixed pattern of parolytic and petrogenic inputs of PAHs in sediments in Haihe River. The petrogenic PAHs may be mainly derived from the leakage of refined products, e.g., gasoline, diesel fuel and fuel oil vehicle traffics or gas stations from urban area. The pyrolytic PAHs might be from the discharge of industrial wastewater and the emission of atmospheric particles from petrochemical factories. In addition, the levels of PAHs in the urban and industrial areas are far beyond the values reported from other rivers and marine systems reported. This situation may be due to polluted discharging from some petrochemical industrial manufactories and worse traffic conditions in Tianjin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号