首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Hydrous manganese dioxide (HMO) synthesized by redox of potassium permanganate and hydrogen peroxide was used as an adsorbent for Pb(Ⅱ) removal.The specific surface area,pore volume and BJH pore diameter of the HMO were 79.31m2/g,0.07cm3/g and 3.38 nm,respectively.The adsorption equilibrium at 298K could be well described by the Langmuir isotherm equation with q max value of 352.55mg/g.The negative values of G and the positive values of H and S indicated the adsorption process was spontaneous and endothermic.The pseudo second-order equation could best fit the adsorption data.The value of the calculated activation energy for Pb(Ⅱ) adsorption onto the HMO was 38.23 kJ/mol.The uptake of Pb(Ⅱ) by HMO was correlated with increasing surface hydroxyl group content and the main adsorbed speciation was PbOH+.The final chemical state of Pb(Ⅱ) on the surface of HMO was similar to PbO.HMO was a promising candidate for Pb(Ⅱ) removal from aqueous solution.  相似文献   

2.
Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1,AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition, thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.  相似文献   

3.
A novel material, aminopropyl-functionalized manganese-loaded SBA-15(NH2-Mn-SBA-15), was synthesized by bonding 3-aminopropyl trimethoxysilane(APTMS) onto manganeseloaded SBA-15(Mn-SBA-15) and used as a Cu2+adsorbent in aqueous solution. Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction spectra(XRD), N2adsorption/desorption isotherms, high resolution field emission scanning electron microscopy(FESEM)and X-ray photoelectron spectroscopy(XPS) were used to characterize the NH2-Mn-SBA-15.The ordered mesoporous structure of SBA-15 was remained after modification. The manganese oxides were mainly loaded on the internal surface of the pore channels while the aminopropyl groups were mainly anchored on the external surface of SBA-15. The adsorption of Cu2+on NH2-Mn-SBA-15 was fitted well by the Langmuir equation and the maximum adsorption capacity of NH2-Mn-SBA-15 for Cu2+was over two times higher than that of Mn-SBA-15 under the same conditions. The Elovich equation gave a good fit for the adsorption process of Cu2+by NH2-Mn-SBA-15 and Mn-SBA-15. Both the loaded manganese oxides and the anchored aminopropyl groups were found to contribute to the uptake of Cu2+. The NH2-Mn-SBA-15 showed high selectivity for copper ions. Consecutive adsorption–desorption experiments showed that the NH2-Mn-SBA-15 could be regenerated by acid treatment without altering its properties.  相似文献   

4.
Two novel polymers (NJ-1 and N J-2) were synthesized by chemically modified a hypercrosslinked polymer NJ-0 with dimethylamine and trimethylamine, respectively. The comparison of the adsorption properties of the three polymers toward phenol, resorcin and phloroglucin was made. The study focused on the static equilibrium adsorption behaviors and the adsorption thermodynamics. Freundlich equation was found to fit the adsorption results well. The effect of amino groups introduced onto the surface of the resin and the structure of phenolic compounds on the adsorption were also studied. The hydrogen-bonding interaction and electrostatic interaction could happen between the amino groups and the adsorbates. The adsorption impetus increased as quantity of hydroxyl groups increased, but the adsorption capacity decreased due to the drop of the matching degree of the aperture of resins and the diameter of adsorbate molecules.  相似文献   

5.
The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qm /SSA) and SSA-normalized adsorption coefficient (Kd /SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (△ G0 ) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (△ H0 ), G0 and free energy of adsorption (Ea ), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and K d /SSA or q m /SSA.  相似文献   

6.
The development of low-cost and efficient new mineral adsorbents has been a hot topic in recent years. In this study, Friedel’s salt (FS:3CaO·A12O3 ·CaCl2 ·10H2O), a hexagonal layered inorganic absorbent, was synthesized to remove Cd2+ from water. The adsorption process was simulated by Langmuir and Freundlich models. The adsorption mechanism was further analyzed with TEM, XRD, FT-IR analysis and monitoring of metal cations released and solution pH variation. The results indicated the adsorbent FS had an outstanding ability for Cd(Ⅱ) adsorption. The maximum adsorption capacity of the FS for Cd(Ⅱ) removal can reach up to 671.14 mg/g. The nearly equal numbers of Cd2+ adsorbed and Ca2+ released demonstrated that ion-exchange (both surface and inner) of the FS for Cd(Ⅱ) played an important role during the adsorption process. Furthermore, the surface of the FS after adsorption was microscopically disintegrated while the inner lamellar structure was almost unchanged. The behavior of Cd(Ⅱ) adsorption by FS was significantly affected by surface reactions. The mechanisms of Cd2+ adsorption by the FS mainly included surface complexation and surface precipitation. In the present study, the adsorption process was fitted better by the Langmuir isotherm model (R2 = 0.9999) than the Freundlich isotherm model (R2 = 0.8122). Finally, due to the high capacity for ion-exchange on the FS surface, FS is a promising layered inorganic adsorbent for the removal of Cd(Ⅱ) from water.  相似文献   

7.
In order to study the influences of functionalized groups onto the adsorption of tetracycline,we prepared a series of amino and amino–Fe~(3+)complex mesoporous silica adsorbents with diverse content of amino and Fe~(3+)groups(named N,N-SBA15 and Fe-N,N-SBA15).The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction(XRD),Fourier transform infrared spectrometer(FTIR)and N_2adsorption/desorption isotherms.Furthermore,the effects of functionalized groups on the removal of TC were investigated.The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe~(3+)groups.The functionalized amino groups decreased the adsorption capacity while the coordinated Fe~(3+)increased the adsorption capacity.The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly.The adsorption isotherms fitted the Langmuir model well and with the Fe~(3+)content increased from 3.93%to 8.26%,the Q_(max)of the adsorbents increased from 102 to 188 mmol/kg.The solution p H affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly.The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes,while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes.This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications.  相似文献   

8.
The study evaluated the adsorption of two antibiotics by four engineered adsorbents (hypercrosslinked resin MN-202, macroporous resin XAD-4, activated carbon F-400, and multi-walled carbon nanotubes (MWCNT)) from aqueous solutions. The dynamic results demonstrated the dominant influence of pore size in adsorption. The adsorption amounts of antibiotics on XAD-4 were attributed to the hydrophobic effect, whereas steric hindrance or micropore-filling played a main role in the adsorption of antibiotics by F-400 because of its high microporosity. Aside from F-400, similar patterns of pH-dependent adsorption were observed, implying the importance of antibiotic molecular forms to the adsorption process for adsorbents. Increasing the ionic concentration with CaCl2 produced particular adsorption characteristics on MWCNT at pH 2.0 and F-400 at pH 8.0, which were attributed to the highly available contact surfaces and molecular sieving, respectively. Its hybrid characteristics incorporating a considerable portion of mesopores and micropores made hypercross linked MN-202 a superior antibiotic adsorbent with high adsorption capacity. Furthermore, the adsorption capacity of MWCNT on the basis of surface area was more advantageous than that of the other adsorbents because MWCNT has a much more compact molecular arrangement.  相似文献   

9.
A novel illite@carbon(I@C) nanocomposite adsorbent has been synthesized via a facile hydrothermal carbonization process(HTC) using glucose as carbonaceous source and illite as the carrier.The morphology,microstructure and surface properties of the prepared nanocomposite adsorbent were analyzed by FESEM,TGA,XRD,FT-IR and Zeta potential measurements.Batch experiments were carried out on the adsorption of Cr(Ⅵ) to determine the adsorption properties of the composite.The adsorption of Cr(Ⅵ) onto the I@C nanocomposite was well described by the pseudo-second-order kinetic model and Langmuir isotherm.Compared with the illite and carbon material(SC) separately,the prepared I@C nanocomposite adsorbent exhibited enhanced adsorption performance for Cr(Ⅵ) with a maximum adsorption capacity of 149.25 mg/g,which was higher than that of most reported adsorbents.In addition,the adsorption process was spontaneous and endothermic based on the adsorption thermodynamics study.The adsorption of Cr(Ⅵ) by I@C was highly p H-dependent and the optimum adsorption occurred at p H 2.0.The Zeta potential analysis results indicated that the electrostatic interactions between anionic Cr(Ⅵ) and the positively charged surface of the adsorbent might be critical to the adsorption mechanism.This study demonstrated that the I@C nanocomposite should be a promising candidate for a low-cost,environmental friendly and highly efficient adsorbent for the removal of toxic Cr(Ⅵ) from wastewater.  相似文献   

10.
For TiO2 heterogeneous reaction, the reaction site and the detailed mechanism are interesting and controversy topics. In this paper, effects of surface fluorination of TiO2 on the photocatalytic degradation of an azo dye, Orange G(OG) under UV or visible light irradiation were investigated, and the possible reaction site and mechanism were elucidated. The adsorption of OG on TiO2 was nearly inhibited by fluoride but its UV light induced photodegradation rate was greatly increased by a factor of about 2.7, which was due to the more generated free hydroxyl radicals. It supported the views that fluoride could desorb the oxidant species from surface and that the reaction sites could move to the bulk solution. In TiO2/Vis system, the observed inhibition effects of fluorination could be interpreted by the competitive adsorption, which provided additional evidences that the visible light sensitized photodegradation of dye pollutants on the catalyst surface.  相似文献   

11.
吸附树脂对苯甲酸的吸附动力学研究   总被引:11,自引:0,他引:11  
对比超高交联吸附树脂NJ 8与AmberliteXAD 4对苯甲酸的静态吸附动力学性质 ,并深入讨论温度和起始浓度对平衡时间和吸附速率的影响。NJ 8和XAD 4两种树脂在吸附苯甲酸的过程中 ,膜扩散和颗粒内扩散均为主控步骤 ,但是前者颗粒内扩散占据优势 ,而后者膜扩散占据优势  相似文献   

12.
杯[4]芳烃修饰Amberlite XAD-4树脂去除水中双氯芬酸   总被引:1,自引:1,他引:0       下载免费PDF全文
通过偶氮化反应将合成的去叔丁基杯[4]芳烃连接到Amberlite XAD-4树脂上,并且采用FTIR、SEM和TG/DTA法表征了杯[4]芳烃修饰Amberlite XAD-4树脂的结构.结果表明,水溶液中杯[4]芳烃修饰Amberlite XAD-4树脂对双氯芬酸的去除率远大于单独Amberlite XAD-4树脂和杯[4]芳烃.双氯芬酸的浓度为20mg/L时,随着杯[4]芳烃修饰AmberliteXAD-4树脂投加量的增加,双氯芬酸的去除率增加很快.当吸附剂量增加到80mg/L时,双氯芬酸的去除率为92.8%,并且达到吸附平衡,吸附的双氯芬酸量为34.02mg/g. Langmuir和Freundlich等温线与实验数据均有很好的拟合度.对热力学参数的计算表明,△H与△G负值显示出反应的放热和自发过程.  相似文献   

13.
粘土颗粒吸附直接染料的分形特征   总被引:2,自引:0,他引:2  
粘土颗粒对直接耐晒黑和直接大红染料的吸附均可分为快速的边缘覆盖和慢速的晶层吸附2个过程,整个吸附过程符合准-二级反应动力学方程式,除了伊利土-直接耐晒黑染料的吸附体系之外,其它体系的吸附过程中以晶层吸附为主的阶段均具有类分形特征.体系的非线性吸附等温线符合Langmuir型吸附等温模式,并且除了蒙脱土吸附直接大红染料之外,也可以用分形Langmuir吸附等温模式获得较好的模拟效果.在不同原始浓度下直接大红染料在粘土颗粒表面发生的边缘覆盖和晶层吸附这2个过程的程度是不同的,从而导致了吸附等温线在原始染料为150mg·L-1时出现最大的吸附量,而且颗粒边缘覆盖的直接大红染料的比例较高.染料进入粘土颗粒的晶层后,扩大了晶层间距,改变了其表面微孔几何结构.颗粒表面棱角变得光滑,结构疏松,片层结构逐渐减少,上述效果在蒙脱土颗粒上或直接耐晒黑染料吸附时表现地更为显著.而且吸附染料后蒙脱土颗粒对N2的吸附量比伊利土下降的幅度小,其比表面积、孔体积和平均孔径的下降比例也比伊利土小,其中平均孔径的差异比较明显.吸附染料之后粘土颗粒表面分形维数Ds均升高了,晶层膨胀和开孔作用抵消了"表面粗糙度屏蔽"、"孔阻塞效应"机理降低Ds的影响.增加了表面粗糙度.  相似文献   

14.
研究了CTMAB-蒙脱石-恶臭假单胞菌复合体吸附Pb2+的物理化学特性,考察了时间Pb2+浓度、pH、温度对吸附的影响,结合FTIR探讨了其作用机理。结果表明,CTMAB-蒙脱石、细菌及其复合体对Pb2+的吸附是一个先快后慢的过程,90min时可基本达到平衡。Pb2+在细菌表面的吸附动力学以Elovich方程为最佳模型,其次为一级动力学方程。改性矿物-细菌复合体和CTMAB-蒙脱石对Pb2+的吸附均以一级动力学方程为最佳模型。Langmuir方程能很好地描述三种表面对Pb2+的吸附热力学。随着体系pH值和温度的升高,CTMAB-蒙脱石、细菌及其复合体对Pb2+的吸附率均逐渐升高。与CTMAB-蒙脱石相比较,EDTA对复合体表面Pb2+的解吸率较大,而去离子水和NH4Cl对Pb2+的解吸率较小。复合体与Pb2+之间可能存在络合、静电力和离子交换等作用力。  相似文献   

15.
改性蒙脱土颗粒吸附直接染料的分形特征   总被引:3,自引:0,他引:3  
研究了改性蒙脱土颗粒(050823和MMT35)吸附2种直接染料(直接耐晒黑G和直接大红4BE)的吸附特性,并从类分形动力学规律、颗粒吸附染料前后的表面分形特征变化等方面对上述吸附过程进行了探讨.结果表明,颗粒对染料的吸附可分为快速的边缘覆盖和缓慢的晶层吸附2个过程.整个吸附过程符合准-二级反应动力学方程,并且染料进入晶层的吸附阶段具有类分形特征.除MMT35-直接大红4BE染料吸附体系外,Freundlich、Langmuir吸附等温模型的非线性方程、不同形式的线性方程及分形Langmuir模型对其余3个吸附体系(050823-直接耐晒黑G、050823-直接大红4BE、MMT35-直接耐晒黑G)等温线数据的模拟均取得了较好的效果,其中,非线性方程是获得统一模型参数较好的方法.此外,染料分子主要通过静电引力/斥力和范德华引力的综合作用吸附在颗粒上,并通过晶层膨胀和开孔作用,使颗粒表面粗糙度增加,相应的表面分形维数Ds升高.  相似文献   

16.
固定化改性累托石微球对水中染料橙黄Ⅱ的吸附   总被引:2,自引:2,他引:0  
旨在为提高累托石对染料的吸附效率,便于其在工业中的应用,采用十六烷基三甲基溴化铵(HDTMA)对天然累托石进行改性,并利用聚乙烯醇(PVA)、海藻酸钠等材料固定改性累托石粉末,制备了微球状吸附剂。考察了固定化改性累托石微球对水中橙黄Ⅱ的吸附性能以及吸附热力学和动力学规律。结果表明,等温吸附规律可用Freundlich和Langmuir模式较好地模拟。吸附活化焓ΔH0呈正值,且吸附体系的ΔH0<-TΔS0,整个吸附过程活化熵的影响大于活化焓,适当升温有利于加速吸附反应的进行。吸附动力学规律符合准一级、二级吸附速率模型、Bangham模式和Elovich模型。膜扩散过程是吸附过程的控制步骤。  相似文献   

17.
通过批量吸附实验考查了7种芳香族化合物在XAD-4上的吸附热力学行为.结果表明,在实验条件下,Freundlich方程能很好地拟合这7种化合物在XAD-4上的等温吸附数据,且都为优惠吸附,吸附能力均随着温度的升高而降低.结合7种化合物的分子结构描述符和Freundlich方程的吸附平衡常数,建立了QSPR模型,较高的可决系数R2(0.991)、去一法交互检验可决系数R2CV(0.985)和外部预测集交互检验系数Q2ext(0.994)表明,该模型具有较高的稳定性能和预测能力.模型结果表明,水杨酸等7种芳香族化合物在XAD-4上的Freundlich吸附平衡常数与溶质疏水性能呈正比关系,与温度、溶质分子极性和溶质分子的氢键酸度常数呈反比关系.  相似文献   

18.
以沉淀白炭黑、NaOH、Na2CO3和水为原料,制备了单一晶相麦羟硅钠石(magadiite),并用BET、X射线衍射、红外以及SEM对其进行表征,并考察了magadiite对Zn2+离子的吸附行为.结果表明:magadiite是一种比表面积为19.38m2/g的非孔型材料,在25℃、Zn2+初始浓度20mg/L、pH值为6、吸附平衡时间为60min时, magadiite的饱和吸附量为42.55mg/g. Magadiite对Zn2+的吸附动力学符合准二级动力学方程,吸附等温线符合Langmuir方程.结合BET、X射线衍射、红外、SEM分析推断magadiite对Zn2+的吸附是物理吸附和化学吸附共存,但以化学吸附为主.  相似文献   

19.
改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附   总被引:2,自引:1,他引:1  
孙庆业  杨林章 《环境科学》2007,28(6):1300-1304
通过批量实验研究了改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附特性.Langmuir和Freundlich吸附等温方程被用于分析吸附等温数据,准一级动力学模型、准二级动力学模型和颗粒扩散模型被用于吸附动力学实验数据分析.结果表明,改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附过程符合Langmuir和Freundlich吸附等温方程,最大吸附量达到71.43 mg·g-1;颗粒扩散模型能够很好地描述改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附动力学过程,水溶液中染料的初始浓度、颗粒直径、颗粒量及搅拌速度对吸附速率均产生一定的影响.改性泥炭-树脂颗粒对水溶液中酸性橙Ⅱ的吸附作用主要发生在颗粒的外表面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号