首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 149 毫秒
1.
本试验采用生物滴滤床(BTF)工艺净化制药厂污水站H2S废气。装置采用实验室分离纯化的菌种经现场培养扩增后所得的高浓度混合菌菌液,在8d内迅速完成启动;试验过程H2S气量为11.3m3/h,平均浓度为385.6mg/m3,平均空床停留时间(EBRT)为13.5s,H2S的平均去除效率96%,且去除率稳定。随着污染物在BTF内EBRT的减少,去除率逐渐减小;H2S去除负荷极限ECmax为209.6g/(m3.h),且80%的去除负荷由填料床的下层承担;增加液体喷淋量有助于强化处理效果,但液膜厚度对净化效率有着负面影响,循环液中的SO42-累积浓度>28g/L时,去除率低于90%。试验结果表明,BTF系统运行稳定,适应性好,应用于工业废气处理是可行的。  相似文献   

2.
生物法处理高浓度H2S废气的现场试验   总被引:14,自引:1,他引:13  
生物法处理废气的现场中试研究可为工业放大装置的设计和运行提供依据.采用规模为18 m3/h的中试装置现场处理某制药厂污水站含H2S浓度238.2~891.5 mg/m3的废气,研究对比了生物滤床(BF)和生物滴滤床(BTF)2种工艺对废气中H2S的去除效果和运行情况.试验表明,当气体空床停留时间(EBRT)为28 s时,在上述浓度范围内,BF和BTF均可几乎完全去除废气中的H2S,且运行稳定;BF的去除率随进口浓度的增加而减小,当EBRT为15 s,进口浓度从243.6 mg/m3增加到584.1 mg/m3时,去除率从95.2%下降到86.3%;BTF的去除率受进口浓度变化的影响较小,当EBRT为9 s时,在试验的浓度范围内,去除率达95%以上;BF和BTF的最大去除负荷分别为138 g/(m3.h)和205 g/(m3·h).床内生物膜中的菌落分析表明,BTF和BF填料表面的微生物都以细菌为主,但前者微生物生长密度高于后者.因此,综合考虑去除性能和运行控制等因素,工业放大装置宜采用BTF工艺.  相似文献   

3.
棕纤维复合生物填料床净化三甲胺和臭气的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
在某鱼粉厂建立了三甲胺(TMA)、臭气生物过滤床工程装置.该系统采用了棕纤维复合生物填料,在温度为25~35℃、空床停留时间(EBRT)20.0s、TMA 进气浓度536~895mg/m3、臭气浓度为9724~13431 倍时,系统对TMA、臭气的平均去除率分别达91.98%、98.70%.EBRT 和进气浓度对净化效率影响明显,进气TMA 浓度1500~1600mg/m3 时, EBRT 从22.5s 增加至60.0s,TMA 去除率从64.67%提高到84.38%.同时,系统对TMA 降解中间产物NH3 也表现出良好的去除效果.  相似文献   

4.
白腐真菌生物过滤塔处理氯苯气体的研究   总被引:9,自引:1,他引:8  
以竹子为填料,构建新型的白腐真菌Phanerochaete chrysosporium生物过滤塔,考察该过滤塔在不同操作条件下对氯苯的去除性能.结果表明,白腐真菌生物过滤塔对氯苯表现出较好的去除效果,在进口浓度200~1 500 mg/m3,空塔停留时间122 s的条件下,最大去除率接近80%,平均去除率约50%.过滤塔的去除速率与进口负荷和去除率有关,在进口浓度500~1 500mg/m3,流量0.5 m3/h的条件下,最大去除速率可达94 g/(m3·h),平均去除速率为60 g/(m3·h).过滤塔去除速率对进口负荷变化的响应幅度与流量有关,在低流量条件下随进口负荷的变化率较大.过滤塔中氯苯浓度的沿程分布呈现出非线性下降的特征,造成这一现象的原因可能与过滤塔内生物量的分布情况有关.  相似文献   

5.
真菌过滤塔净化含苯、甲苯废气影响因素的研究   总被引:1,自引:0,他引:1  
Cao XQ  Huang XM  Ma GD 《环境科学》2007,28(8):1873-1877
利用2段可调温式生物过滤塔,以真菌为降解菌,研究了入口污染物浓度0.9~5.0 g/m3条件下,温度、填料湿度对苯、甲苯废气净化效率的影响.结果表明,当塔内温度在30~40 ℃时,生物塔净化能力较高;其中塔内温度32.8℃时,微生物对苯和甲苯的净化能力最高,在该温度下,当苯、甲苯入口负荷分别为673.5和665.0 g/(m3·h)时,过滤塔的最大去除负荷分别为136和150 g/(m3·h).试验研究了填料湿度对净化能力的影响,结果表明,高填料湿度不利于真菌过滤塔对苯和甲苯的净化,本试验的最佳填料湿度是45%左右,填料湿度在40%~50%范围内,过滤塔表现出较高的净化效率.随着过滤塔的运行,系统压降由挂膜前的18 Pa逐渐上升到后期的39 Pa,渗滤液的颜色也逐渐加深,表明塔内存在生物量积累的问题.  相似文献   

6.
UV-生物过滤联合降解苯乙烯废气的研究   总被引:1,自引:0,他引:1  
沙昊雷  杨国靖  夏静芬 《环境科学》2013,34(12):4701-4705
实验采用主波长为185 nm的低压汞灯为紫外光源,泥炭、棕纤维、多孔活性炭为填料的UV-生物过滤塔联合装置净化苯乙烯废气.苯乙烯进气浓度控制在320~583 mg·m-3之间,稳定后去除率能维持在95%以上.UV光解苯乙烯形成醇、醛、羧酸等水溶性较好的可生物降解的物质,能改善生物过滤塔的运行性能.稳定运行阶段,当总停留时间(total residence time,TRT)较长时,进气浓度的变化基本不影响去除率,随着TRT减少,进气浓度对去除率的影响逐渐显现.TRT为102 s时,联合装置的去除负荷随进气负荷的增加而线性增加,去除率达95%以上.TRT为68 s时,进气负荷较低时,去除负荷的变化也遵循上述规律,但当进气负荷大于30 g·(m3·h)-1时,去除负荷逐渐偏离直线并趋于某一定值.若仅考虑苯乙烯浓度的增减,UV光解对苯乙烯的去除贡献率高于生物过滤塔,而系统关停10 d后重启,苯乙烯的去除效果在第4 d就能恢复.  相似文献   

7.
采用自行设计的生物滤池反应器去除地表水中的氮,考察了HRT、水力负荷和氨氮负荷对生物滤池出水水质的影响。结果表明:系统TN去除率随水力负荷的增加而下降,氨氮去除率无明显变化,水力负荷小于1.2 m3/(m2·d),TN去除率达到54%以上;在进水氨氮质量浓度为14.52~17.44 mg/L条件下,HRT为10 h时,生物滤池对氮去除效果较好;当HRT为6 h,进水氨氮负荷增加到0.048 kg/(m3·d)以上,氨氮和TN平均去除率分别为96%和31%。  相似文献   

8.
泥炭生物滤塔处理低浓度H2S气体的试验研究   总被引:20,自引:0,他引:20       下载免费PDF全文
研究了泥炭生物滤塔处理含低浓度H2 S恶臭气体的技术 .实验考察并研究了气体停留时间和H2 S进气负荷对H2 S去除率的影响 ,生物滤塔的抗冲击负荷能力以及生物降解宏观动力学 .结果表明 ,当停留时间为 2 5— 30s时 ,进气浓度为 3— 70mg m3 ,去除率达到 99%以上 ,且具有较强的抗冲击负荷 .  相似文献   

9.
间歇喷淋营养液对生物滴滤塔净化甲苯的影响   总被引:2,自引:0,他引:2  
为探索间歇喷淋营养液对生物滴滤塔的影响,以净化甲苯为研究对象,应用FX1N-14MR-001型可编程逻辑控制器(PLC),实现生物滴滤塔的间歇喷淋营养液操作,研究了环境温度、ρ(TN)、营养液喷淋密度和喷/停时间对净化甲苯能力的影响,并对机理进行了分析. 结果表明:当生物滴滤塔系统的气体停留时间为40.70s时,营养液最佳喷淋密度为4.5L/(m2·min),最佳喷/停时间为2min/4min. 当甲苯系统进口负荷小于88.29g/(m3·h)时,甲苯的去除率可达95.0%以上;当进口负荷为186.04g/(m3·h)时,甲苯的去除率为87.6%,系统对甲苯的最大去除能力由连续喷淋时的169.63g/(m3·h)升至248.85g/(m3·h).   相似文献   

10.
利用甲硫醚(DMS)降解菌Alcaligenes sp.SY1和丙硫醇(PT)降解菌Pseudomonas putida.S-1强化生物滴滤塔(BTF)处理DMS和PT的混合废气,研究了其挂膜启动及稳定运行阶段的降解性能,并考察了该系统同时去除H2S的能力.结果表明,BTF在DMS和PT进口浓度均为50 mg·m-3,EBRT为30 s的条件下,运行11 d即可完成挂膜启动,填料上的生物量明显增加,DMS、PT的去除率分别可达到90%和100%.系统稳定运行时,DMS和PT的最大去除负荷分别为8.7 g·(m~3·h)~(-1)和12.4 g·(m~3·h)~(-1),PT的去除效果更佳.DMS和PT混合废气在降解过程中,PT对DMS的降解有较明显的抑制作用,当PT进气浓度大于51 mg·m-3时,DMS的去除效率下降.BTF还能同时有效去除H2S,当混合废气中H2S浓度达到230 mg·m-3时,H2S去除率仍能高达98%,但是115 mg·m-3以上的H2S会对DMS的降解产生不利影响.  相似文献   

11.
两级滴滤去除硫化氢和甲硫醇混合恶臭气体   总被引:11,自引:0,他引:11  
把氧化硫硫杆菌(T. thiooxidans)、排硫硫杆菌(T. thioparus)组成的自养菌群和黄单胞菌(Xanthomonas)为主的异养菌群分别接种在两个生物滴滤反应器中,将其依次串联净化处理硫化氢(H2S)、甲硫醇(MT)混合臭气.一级反应器(A#)的复合自养菌在酸性环境下对负荷为7~8g/(m3h)的H2S平均去除率可达94%,且不受混合气体中MT含量的影响.二级反应器(B#)适于中性环境,对负荷为4~5g/(m3h)的MT平均去除率为83%.若H2S在混合气体中浓度过高,经A#处理后的浓度仍高于50mg/m3,可导致后反应器酸化,使MT脱臭效率显著下降.  相似文献   

12.
IntroductionOff gasescontainingVOCandodorsmaydogreatharmtoenvironmentandpeople’shealth .Therearemanymethodsfortreatingthem ,suchasphysicalmethods ,chemicalmethodsandbiologicalmethods.Biologicalmethodsarewidelyappliedintheprocessofoff gasespurificationfor…  相似文献   

13.
选用榛子壳作为反应器的填料,利用沈阳北部污水处理厂的活性污泥对填料进行挂膜,由低到高通入甲醛气体进行驯化。在系统稳定后进行了生物过滤塔净化甲醛气体的实验研究,并建立了生物过滤塔降解甲醛气体的动力学模型。结果表明,入口气体浓度在低于25mg/m3时,甲醛废气的净化效率可保持在97%以上,超过此浓度值时,效率明显下降。随着进口气体流量的增加,净化率逐渐下降,由入口流量为0.2m3/h时的97.25%下降到入口流量为0.8m弧时的57.2%。根据现有动力学模型及本实验得出数据所建立的生物过滤塔净化甲醛气体的动力学模型,可以较好地模拟系统处理甲醛废气的实验结果,验证了模型的正确性。  相似文献   

14.
紫外光降解高浓度氯苯气体的研究   总被引:2,自引:0,他引:2  
为评价紫外光降解作为高浓度挥发性有机物生物预处理的可行性,系统考察了其对高浓度氯苯气体的去除性能及其影响因素.所考察的影响因素包括紫外光波长、进口ρ(氯苯)、空塔停留时间和气体相对湿度等.结果表明:复合254和185 nm波长紫外光照射对氯苯的去除效果优于单一254 nm波长;紫外光降解反应器的进口ρ(氯苯)在2 300~2600 mg/m3,空塔停留时间为27 s时,对氯苯气体的去除率可达40%,继续延长空塔停留时间对氯苯去除率的提高作用有限;进口ρ(氯苯)在150~3 000 mg/m3时,氯苯去除速率随进口浓度单调增加,当高于3 000 mg/m3时,氯苯去除速率基本保持不变;增加气体相对湿度可以提高紫外光降解反应器对氯苯的去除效果.   相似文献   

15.
微生物燃料电池表观内阻的构成和测量   总被引:3,自引:1,他引:2  
梁鹏  范明志  曹效鑫  黄霞  王诚 《环境科学》2007,28(8):1894-1898
将微生物燃料电池内部各种阻力用表观内阻统一表征,在建立其等效电路的基础上将表观内阻分为欧姆内阻和非欧姆内阻2部分.通过稳态放电法测量微生物燃料电池表观内阻,在改变外电阻后稳定时间需要60 s以上方能保证测定准确性,通过稳态放电法测定一室型微生物燃料电池的表观内阻为289 Ω,当外电阻等于表观内阻时微生物燃料电池对外输出功率达到最大,为241 mW/m2;通过电流中断法测量一室型微生物燃料电池的欧姆内阻为99 Ω,测定结果与断电前电流强度无关;当一室型微生物燃料电池对外供电分别处于活化极化区、欧姆极化区和浓差极化区时,非欧姆电阻占总内阻的比例分别为93%、66%和75%,在电池对外供电达到最大时非欧姆占总内阻比例最低.提高微生物燃料电池产电能力需要同时降低电池的欧姆内阻和非欧姆内阻.  相似文献   

16.
生物滤床中一氧化氮的好氧去除过程研究   总被引:1,自引:3,他引:1  
以美国Ultramet公司生产的Carbon-Foam为滤料,应用生物滤床处理NO模拟废气,研究了生物滤床在好氧条件下对NO的处理效果,并对NO去除过程的作用机理进行了探讨.研究结果表明,NO的去除效率随空床停留时间(EBRT)的增加而增加,在EBRT为6min、进口NO浓度为107.14mg.m-3时,NO去除效率为63%;随着进口浓度的提高,NO去除效率降低,而NO消除负荷增加.生物滤床中NO的去除过程由微生物硝化和化学氧化共同作用完成,其中以微生物硝化作用为主.化学氧化作用包括气相过程和液相过程2部分,当EBRT<4.6min时,液相中的化学氧化作用大于气相;当EBRT>4.6min时,气相中的化学氧化作用大于液相.当EBRT≤2min时,传质是NO去除过程的控制步骤,此时,微生物硝化作用和液相中的化学氧化作用均受传质过程控制.  相似文献   

17.
真菌生物滤池净化苯乙烯废气的研究   总被引:1,自引:0,他引:1  
采用接种Aspergillus candidus和Penicillium frequentans的真菌生物滤池处理苯乙烯废气,考察苯乙烯在生物滤池中的净化效果和物质转化特性。苯乙烯的进气质量浓度为200~800 mg/m3,气体流量分别为0.28,0.38和0.48 m3/h,对应的气体停留时间分别为60,45和35 s。试验结果表明:苯乙烯在真菌生物滤池中有较好的处理效果,最大去除能力达66.78 g/(m3.h),真菌生物滤池中二氧化碳的产生量和苯乙烯去除量呈线性关系。微生物分析结果表明,接种的Aspergillus candidus和Penicillium frequentans在反应器内能够长期保持优势地位。  相似文献   

18.
The nuisance impact of air pollutant emissions from wastewater pumping stations is a major issue of concern to China. Hydrogen sulfide and ammonia are commonly the primary odor and are important targets for removal. An alternative control technology, biofiltration, was studied. The aim of this study is to investigate the potential of unit systems packed with compost in terms of ammonia and hydrogen sulfide emissions treatment, and to establish optimal operating conditions for a full-scale conceptual design. The laboratory scale biofilter packed with compost was continuously supplied with hydrogen sulfide and ammonia gas mixtures. A volumetric load of less than 150 gH2S/(m^3.d) and 230 gNH3/(m^3.d) was applied for about fifteen weeks. Hydrogen sulfide and ammonia elimination occurred in the biofilter simultaneously. The removal efficiency, removal capacity and removal kinetics in the biofilter were studied. The hydrogen sulfide removal efficiency reached was very high above 99%, and ammonia removal efficiency was about 80%. Hydrogen sulfide was oxidized into sulphate. The ammonia oxidation products were nitrite and nitrate. Ammonia in the biofilter was mainly removed by adsorption onto the carrier material and by absorption into the water fraction of the carrier material. High percentages of hydrogen sulfide or ammonia were oxidized in the first section of the column. Through kinetics analysis, the presence of ammonia did not hinder the hydrogen sulfide removal. According to the relationship between pressure drop and gas velocity for the biofilter and Reynolds number, non-Darcy flow can be assumed to represent the flow in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号