首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
东海大气气溶胶中二元羧酸的分布特征及来源   总被引:1,自引:0,他引:1  
大气气溶胶中的二元羧酸因其在全球气候变化中的潜在作用而受到广泛关注.利用2011年5月12日-6月6日在东海采集的气溶胶样品,分析其中水溶性二元羧酸及常量离子浓度,探讨东海气溶胶中二元羧酸的时空分布特征及来源.结果显示东海大气气溶胶中乙二酸、丙二酸和丁二酸的浓度分别为26.0~1475.5 ng·m-3、0.1 ~61.4 ng·m-3和0.1~132.4 ng·m-3,乙二酸在这3种二元羧酸中的贡献最大,为88.3%.东海气溶胶中二元羧酸浓度的昼夜变化不显著.空间分布整体呈现近海高、远海低的趋势.气团的来源和迁移路径以及气象因素影响气溶胶中二元羧酸的分布,气团来自污染较重的陆源时气溶胶中二元羧酸的浓度较高,气团来自清洁的海洋源时,二元羧酸的浓度则较低;阴雾天气时气溶胶中二元羧酸浓度相对较高,降雨发生时二元羧酸的浓度较低.二元羧酸与常量离子的相关性分析表明,自然源和人为源释放的挥发性有机物质在液相中氧化生成二元羧酸是东海大气气溶胶中二元羧酸的主要源,而汽车尾气和生物质燃烧的一次排放、海洋源以及碱性粗颗粒吸收气体二元羧酸不是主要源.液相中乙醛酸氧化形成的乙二酸和长链二元羧酸氧化形成的乙二酸对东海气溶胶中乙二酸的贡献分别为41%和59%.  相似文献   

2.
南京市大气气溶胶中二元羧酸昼夜变化研究   总被引:7,自引:1,他引:7  
2002年3月14-19日在南京大学校园内进行了为期1周的采样,用以研究大气气溶胶PM2.5中的低分子量(C2~C10)二元羧酸的昼夜变化规律.结果表明,南京市大气气溶胶中二元羧酸的夜间质量浓度(平均为460ng/m3)普遍高于相应的白天质量浓度(平均为350 ng/m3).草酸是含量最高的二元羧酸,其次是丁二酸与丙二酸,这3种二元羧酸占所检测到的水溶性有机酸总量的89%.由C3/C4(ρ(丙二酸)/ρ(丁二酸))(平均为1.00)可以判断采样期间气溶胶中有机酸主要来源于大气的光化学氧化反应,从C6/C9(ρ(己二酸)/ρ(壬二酸))(平均为0.88)可以认为生物源是有机酸的一个重要来源.   相似文献   

3.
北京大气颗粒物中一元羧酸的季节变化和来源分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过膜采样溶剂提取、衍生化GC/MS分析,对2006年9月~2007年8月间北京大气PM10和PM2.5中的一元羧酸进行了观测研究.结果表明,可检出C10~C30的烷酸以及油酸、亚油酸和桐油酸3种烯酸,其中含量最高的是C16和C18 2种烷酸.PM10中,一元羧酸总浓度为61.7~1652.3ng/m3,年平均为426.2ng/m3;PM2.5中,一元羧酸总浓度为34.5~992.1ng/m3,年平均为319.6ng/m3.75%的一元羧酸分布在细粒子中,且冬、春季浓度明显高于夏、秋季.春、夏、秋、冬4个季节PM10中一元羧酸浓度分别为(625.1±403.8), (200.0±95.3), (263.0±201.1), (659.9±433.5)ng/m3; PM2.5中一元羧酸浓度为(431.7±211.0), (194.4±95.8), (207.9±160.8), (463.6±262.1)ng/m3.源解析显示,燃煤排放是冬季最主要的人为污染源;机动车排放则在其他季节贡献最大.  相似文献   

4.
广州森林大气中VOCs昼夜变化特征及对O_3的影响   总被引:1,自引:0,他引:1  
挥发性有机物化合物(VOCs)是大气光化学过程的重要前驱物,对大气中的臭氧(O)3有重要影响。文章对广州市花都区王子山森林公园大气中VOCs的昼夜变化特征进行了分析,并且评估了其对大气中O3的相对贡献。共定性和定量了21种VOCs,其中1,2,4-三甲基苯(21.50±32.90)μg/m3、甲基环戊烷(20.40±23.30)μg/m3和异戊二烯(14.90±39.20)μg/m3浓度最高。对于大多数VOCs来说,活性VOCs与相对惰性的VOCs表现出相反的昼夜变化特征,这反映了大气光化学反应对于VOCs的影响。采用Propy-Equiv浓度对大气VOCs对O3的影响评估结果表明,该地区大气VOCs对O3贡献的大小为:烯烃>苯系物>烷烃。  相似文献   

5.
北京市大气气溶胶中糖类化合物的组成及来源   总被引:1,自引:4,他引:1  
采用高效阴离子交换色谱-脉冲安培检测(HPAEC-PAD)分析方法,对北京城区PM2.5和PM10中糖类化合物进行定量分析.在北京大气气溶胶中共检出14种糖类化合物,分为脱水糖、糖和糖醇共3大类.脱水糖包括左旋葡聚糖、甘露聚糖和半乳聚糖;糖包括葡萄糖、果糖和海藻糖;糖醇包括阿拉伯糖醇、甘露糖醇、丙三醇、苏糖醇、2-甲基丁四醇(2-甲基苏糖醇和2-甲基赤藓糖醇)、木糖醇和肌醇.脱水糖来源于生物质燃烧,秋冬季节的浓度水平明显高于春夏;而来源于生物源排放的糖和糖醇,冬季浓度水平明显低于其它季节.PMF源解析结果表明,北京大气气溶胶中糖类化合物的来源主要可以分为6类,包括生物质燃烧、异戊二烯SOA、土壤悬浮、真菌孢子、花粉及丙三醇富集源.  相似文献   

6.
为研究泰山夏季大气PM_(2.5)中二元羧酸类化合物的浓度水平、分子组成及来源,于2014年7~8月在泰山山顶进行PM_(2.5)样品采集,分析其二元羧酸类化合物、生物源二次有机气溶胶的示踪物(异戊二烯、α-/β-蒎烯及β-石竹烯的氧化产物)、水溶性有机碳(WSOC)及无机离子.结果表明,泰山夏季PM_(2.5)中二元羧酸的总浓度为(376±189)ng·m-3,其中草酸(C2)的浓度最高,其次是丙二酸(C3)、丁二酸(C4)和壬二酸(C9).泰山地区二元羧酸总浓度高于海洋地区,但低于城市和其他高山地区,表明受人为污染影响较小.C2/C4、C3/C4和F/M比值表明二元羧酸主要来自光化学氧化,且氧化程度较深.C9占二元羧酸的相对含量、C9/C6和C9/Ph比值均高于城市、海洋与高山地区,表明泰山地区SOA主要受生物源的影响,而非人为源.通过与模式估算值的对比及相关性分析,进一步表明泰山夏季二元羧酸类SOA主要受当地生物源光化学氧化的影响.  相似文献   

7.
香港大气气溶胶组成与特征   总被引:4,自引:0,他引:4  
选用香港空气质量监测网中11个监测站1990~1994年间TSP(总悬浮粒子)和RSP(可吸入悬浮粒子)的监测数据,分析香港大气气溶胶的化学组成与时空变化。香港大气气溶胶的浓度较低,其浓度的季节变化主要受气候变化的影响。C是大气气溶胶中最重要的化学成分,它支配着气溶胶的季节和空间变化。SO2-4、NH+4和NO-3的浓度很低,空间分布很均匀,其季节变化主要受东亚季风控制。海洋气溶胶主要以较大的颗粒形式存在,它的来源稳定且空间分布较均匀。扬尘浓度主要受降雨和湿度的影响。V和Ni浓度的季节变化与燃料油消耗量的季节变化相同,其空间的变化反映了当地工业窑炉排放对香港气溶胶的影响  相似文献   

8.
长春秋季细颗粒物中有机气溶胶组成特征及来源   总被引:2,自引:0,他引:2  
利用大流量采样器采集了长春城郊2016年10月至2016年11月大气细颗粒物(PM_(2.5))样品共40套,分析了颗粒物中的有机碳(OC)、元素碳(EC)以及非极性有机化合物(主要包括正构烷烃、多环芳烃以及藿烷类化合物)和生物质燃烧标志物左旋葡聚糖的质量浓度,并用分子标记物、特征比值及主成分分析-多元线性回归(PCA-MLR)模型等方法探讨了有机气溶胶的主要来源.结果表明,观测期间PM_(2.5)的平均质量浓度为(79. 0±55. 7)μg·m~(-3),OC和EC的平均质量浓度分别为(20. 7±15. 6)μg·m~(-3)和(2. 2±1. 1)μg·m~(-3),分别占PM_(2.5)的26. 2%和2. 8%.所测非极性有机化合物的总平均浓度为(186. 3±104. 5) ng·m~(-3),浓度高低顺序为正构烷烃[(101. 3±67. 0) ng·m~(-3)]多环芳烃[(81. 4±46. 0) ng·m~(-3)]藿烷类化合物[(3. 8±1. 9) ng·m~(-3),其主要来源包括煤燃烧源、生物质燃烧源以及交通源.主成分分析-多元线性回归模型得出该地区有机气溶胶主要排放源的相对贡献依次是煤燃烧源(47. 0%)、生物质燃烧源(42. 6%)和交通源(10. 4%).本研究结果可为我国东北地区有机气溶胶污染防控提供科学依据.  相似文献   

9.
2011年夏季8月,在西安交通大学主楼顶(距离地面约100 m)运用MOUDI采样器采集了5套不同粒径大气气溶胶样品,经TMS硅烷化后运用GC/MS定量分析了生物二次有机气溶胶(BSOA)异戊二烯氧化产物(2-甲基丁四醇, C5-烯三醇和2-甲基甘油酸)、单蒎烯类氧化产物(顺蒎酸,蒎酮酸,3-羟基戊二酸和3-甲基-1,2,3-丁三酸)以及倍半萜烯氧化产物(倍半萜烯酸)浓度。结果显示:西安城区大气BSOA中主要以异戊二烯类为主,其次是单萜烯和倍半萜烯类BSOA,其氧化所产生的生物二次有机碳(BSOC)浓度分别为0.39 μgC·m-3,0.13 μgC·m-3和0.10 μgC·m-3。粒径分布研究表明:BSOA主要富集在细颗粒物上。MBTCA/CPA特征比值表明:采样期间西安城区BSOA主要来自本地源,老化程度较低。  相似文献   

10.
为研究菏泽市冬季大气气溶胶中二元羧酸类化合物的昼夜变化特征与形成机制,于2017年冬季(12月)进行为期1个月的PM_(2.5)样品采集,并分析二元羧酸、酮羧酸、α-二羰基化合物及左旋葡聚糖等化学组分.结果表明,菏泽市冬季PM_(2.5)中白天二元羧酸与酮羧酸的总浓度均呈昼高夜低的变化特征,但α-二羰基化合物(二元羧酸的重要前体物)的变化特征却与之相反,表明白天气溶胶的氧化程度比夜晚强.无论在白天还是晚上,草酸(C_2)均是浓度最高的二元羧酸,其次是邻苯二甲酸(Ph)、丁二酸(C_4)和丙二酸(C_3),与其他城市地区的分子组成是相似的.由C_3/C_4的比值与温度(T)间的相关性分析可知,菏泽市冬季有机化合物主要受本地源的影响,而受远源输入的影响很小. C_2与SO_4~(2-)、气溶胶实际酸度(pHIS)的相关性分析表明,C_2主要是在液相中经酸催化的二次氧化反应形成的.因为主要的二元羧酸类化合物(C_2、Gly和mGly)与左旋葡聚糖(Levo)的相关性很强,且K~+/OC的平均比值为0. 06(范围为0. 03~0. 13),所以可以得出二元羧酸类化合物及K~+主要受生物质燃烧的影响.  相似文献   

11.
利用2019年12月至2020年1月在西安市3次灰霾污染过程中采集的PM2.5样品,采用BCA试剂法、离子色谱和气相色谱-质谱检测法分别对样品中的蛋白质含量及无机有机化学成分进行了分析测定,结合相关性分析和气团后向轨迹模型分析探讨了PM2.5上蛋白质对灰霾污染的响应及其在污染过程中可能的作用.结果表明,冬季灰霾污染期间,西安市PM2.5中蛋白质组分的平均浓度为(5.587±2.421)μg/m3,处于较高水平;蛋白质浓度变化呈现出显著的短期连续变化特征,夜晚略高于白天.蛋白质的浓度与Cl-和K+呈显著的正相关,说明气溶胶中蛋白质的来源与燃煤和生物质燃烧有关;与NO3-与SO42-的浓度呈现显著的正相关,表明蛋白质可能参与NO3-与SO42-的氧化转化;蛋白质具有良好的吸湿性,在湿度较大时,以其为核心吸附空气中的水蒸气及易溶于水的气态污染物(O3、SO2、NOX以及挥发性有机物等)形成的气溶胶易于发生吸湿增长及非均相反应,可能利于二次气溶胶的生成.  相似文献   

12.
为研究济南市冬季PM2.5中二元羧酸类二次有机气溶胶(SOA)的来源、液相形成机制及影响因素,于2016年1-2月昼夜共采集46个PM2.5样品,并对二元羧酸类SOA(包括二元羧酸、酮羧酸与α-二羰基化合物)与左旋葡聚糖的昼夜变化特征进行分析.研究结果表明,二元羧酸、α-二羰基化合物与左旋葡聚糖均呈昼低夜高的变化特征,...  相似文献   

13.
南京市大气中PM10、PM2.5日污染特征   总被引:16,自引:0,他引:16  
于2001年秋季(11月)、夏季(8月)对南京市五大典型功能区的大气颗粒物(PMl0、PM2.5)进行了监测研究。结果发现,南京市颗粒物污染严重,PMl0、PM2.5的超标率分别达到了65%、85%;颗粒物浓度季节变化大,11月污染物浓度明显大于8月,PMl0、PM2.5分别相差l68.44μg/m^3、190.1μg/m^3;PMl0中PM2.5比重较大,大约为75.9%,对人体健康潜在危害大。  相似文献   

14.
The chemical characteristics, oxidative potential, and sources of PM2.5 were analyzed at the urban sites of Lahore and Peshawar, Pakistan in February 2019. Carbonaceous species, water soluble ions, and metal elements were measured to investigate the chemical composition and sources of PM2.5. The dithiothreitol (DTT) consumption rate was measured to evaluate the oxidative potential of PM2.5. Both cities showed a high exposure risk of PM2.5 regarding its oxidative potential (DTTv). Carbonaceous and some of the elemental species of PM2.5 correlated well with DTTv in both Lahore and Peshawar. Besides, the DTTv of PM2.5 in Lahore showed significant positive correlation with most of the measured water soluble ions, however, ions were DTT-inactive in Peshawar. Due to the higher proportions of carbonaceous species and metal elements, Peshawar showed higher mass-normalized DTT activity of PM2.5 compared to Lahore although the average PM2.5 concentration in Peshawar was lower. The high concentrations of toxic metals also posed serious non-carcinogenic and carcinogenic risks to the residents of both cities. Principle component analysis coupled with multiple linear regression was applied to investigate different source contributions to PM2.5 and its oxidative potential. Mixed sources of traffic and road dust resuspension and coal combustion, direct vehicle emission, and biomass burning and formation of secondary aerosol were identified as the major sources of PM2.5 in both cities. The findings of this study provide important data for evaluation of the potential health risks of PM2.5 and for formulation of efficient control strategies in major cities of Pakistan.  相似文献   

15.
西安冬春季PM10中碳气溶胶的昼夜变化特征   总被引:3,自引:0,他引:3  
为探讨西安市大气碳气溶胶的季节变化和昼夜变化特征及来源,于2006-12-19~2007-01-21(冬季)和2007-04-01~2007-04-30(春季)连续采集了大气可吸入颗粒物(PM10)样品,并采用IMPROVE热光分析法分析了其中有机碳(OC)和元素碳(EC)的昼夜浓度.结果显示,冬季白天PM10及其中OC和EC的平均浓度分别为455.0、62.4和7.5μg/m3,夜晚的平均浓度分别为448.7、66.1和6.9μg/m3,对应春季白天的平均浓度分别为397.9、26.7和6.9μg/m3,夜晚分别为362.1、31.9和8.6μg/m3.冬季白天OC与EC的相关系数为0.44,较之春季0.81要差,主要与冬季采暖期燃料的多样性有关.碳气溶胶组分中,冬季白天和晚上二次有机碳气溶胶(SOC)的平均浓度为8.9和10.2μg/m3,远高于春季(2.8和3.4μg/m3),说明冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成.对碳气溶胶8种组分的因子分析结果表明,冬季燃煤排放及郊区的生物质排放对碳气溶胶有重要的贡献,而春季机动车的贡献明显增加.  相似文献   

16.
太原市PM10及其污染源中碳的同位素组成   总被引:1,自引:0,他引:1       下载免费PDF全文
通过采集太原市PM10及其主要源(煤烟尘、机动车尾气尘、土壤风沙尘)样品,结合离线分步加热氧化法和同位素质谱仪测定了颗粒物中有机碳(OC),元素碳(EC)和总碳(TC)的同位素组成, 并探讨了太原市PM10中碳的来源.结果表明,太原市冬季、春季PM10中OC、EC和TC的碳同位素组成分别是-34.7‰、-23.5‰、-23.9‰和-30.5‰、-23.1‰、-23.9‰; 煤烟尘中OC、EC和TC的碳同位素组成分别是-26.5‰、-23.2‰、-23.6‰,土壤风沙尘分别为-24.6‰、-14.1‰、-17.3‰,汽油车和柴油车尾气尘分别为-27.7‰、-25.5‰、-27.0‰和-25.7‰、-24.3‰、-24.8‰. EC和TC的同位素组成是区分土壤风沙尘较好的标识指标,TC的同位素组成是汽油车尾气尘较好的标识指标;利用二元复合计算公式结果显示土壤风沙尘中OC、EC占TC的百分含量分别为30%、70%;煤烟尘中OC、EC占TC的百分含量分别为11%、89%;汽油车尾气尘中OC、EC占TC的百分含量分别为78%、22%,柴油车尾气尘中OC、EC占TC的百分含量分别为36%、64%;太原市PM10中的TC和EC主要来源于煤烟尘,OC少部分来源于机动车尾气排放,另外还有其他的重要贡献源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号