首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 395 毫秒
1.
气相色谱法测定工业废水中的氯代苯类   总被引:1,自引:0,他引:1  
本文提供了测定工业废水中12种氯苯的简便方法:ECD-GC法.水样用石油醚萃取、经硅胶柱净化,使氯苯与六六六、DDT等完全分离.采用SF-96改性的有机皂土填充柱,可在恒温下将12个氯苯完全分离.当水中氯苯浓度在10mg/250ml(一氯苯)和0.00126mg/250ml(1,2,3,5-四氯苯)之间时,方法的回收率为93.5%.最大相对标准偏差小于4%.  相似文献   

2.
采用液液萃取前处理技术,利用二氯甲烷作为萃取剂,用FID检测器进行测定。该方法中,10种硝基苯类化合物在15 min内能够很好地分离,加标回收率为83.1%~106.2%。该方法简单、快捷、通用,且所用有机试剂毒性相对较低,具有较好的推广性与实用性。应用该方法对湘江和东江湖水中的硝基苯类化合物含量进行调查,表明该河流与湖库水质未受到硝基苯类化合物的污染。  相似文献   

3.
吴孟李 《重庆环境科学》2003,25(12):13-14,19
对自动固相微萃取(SPME)-毛细管气相色谱法测定环境水中苯系物的方法进行了研究。通过对环境水中苯系物在不同SPME条件的优化、筛选实验,建立了苯系物的自动固相微萃取-气相色谱的检测方法,该方法简便、灵敏、快捷、可靠,分离度高,准确性好。在0.001mg/L~1.00mg/L范围内有良好的线性关系,最低检测浓度为0.1lμg/L~0.41μg/L。样品测定的相对标准偏差为1.8%~3.5%,回收率为88%~108%,精密度和准确度均较好。  相似文献   

4.
建立了高效液相色谱法测定水中六种邻苯二甲酸酯(邻苯二甲酸二甲酯、邻笨二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸二辛酯、邻苯二甲酸丁基苄酯)的检测方法.对水样中邻苯二甲酸酯的萃取条件和高效液相色谱分析条件进行优化,采用正己烷二次萃取,浓缩定容后分析,以乙腈-水为流动相梯度洗脱,紫外检测波长226 nm,16 min可将六种邻苯二甲酸酯分离出.方法的检出限为0.13μg/L ~0.37 μg/L,加标回收率为78.6%~118.5%,相对标准偏差为0.82%~2.17%,是一种理想的测定水中六种邻苯二甲酸酯的方法.  相似文献   

5.
用三氯甲烷一次萃取,FID-气相色谱法测定鱼塘污染水体中的灭扫利,检出浓度<0.02mg/L,回收率>80%,精密度<4.0%,本方法可用于水中灭扫利的快速测定。  相似文献   

6.
文章建立了直接浸入固相微萃取-气质联用测定饮用水中邻苯二甲酸二正丁酯(DBP)含量的方法。通过响应面法优化100-μm PDMS纤维萃取自来水中DBP的条件,以DBP的峰面积为指标,考察了萃取温度、萃取时间和解析时间三个主要因素对萃取效果的影响。经响应面优化的最佳SPME萃取条件如下:萃取温度53.17℃,萃取时间50.49 min,解析时间4.62 min。在优化条件下,DBP的理论最大峰面积为7.16×108,验证值为6.68×108,与理论值相差6.70%。结果表明,响应面法适用于饮用水中邻苯二甲酸二正丁酯固相微萃取条件的优化,经优化得到的参数准确可靠。  相似文献   

7.
提出了测定水中总铁的新方法-邻菲哆啉直接光度法。该方法检出限为0.03mg/L,显色络合物显色15min后可稳定6个月,精密度RSD〈4.32%,加标回收率为95.3%~103%。对地下水、地表水、工业废水和铁标准样品的比对实验表明,邻菲哆啉直接光度法与邻菲哆啉光度法(标准法)的测定结果无显著差异。  相似文献   

8.
提出了测定水中总铁的新方法-邻菲哆啉直接光度法。该方法检出限为0.03mg/L,显色络合物显色15min后可稳定6个月,精密度RSD〈4.32%,加标回收率为95.3%~103%。对地下水、地表水、工业废水和铁标准样品的比对实验表明,邻菲哆啉直接光度法与邻菲哆啉光度法(标准法)的测定结果无显著差异。  相似文献   

9.
本文建立了分散液液微萃取结合气相色谱质谱联用法测定海水中三氯苯(TCBs)的方法。考察了萃取剂和分散剂的种类、体积、超声萃取时间、萃取温度等对模拟海水加标样品的萃取效率的影响,得到最佳萃取实验条件为:以丙酮为分散剂、氯苯为萃取剂,超声萃取时间为10 min,萃取温度为25℃。样品的加标回收率为97.8%~102.5%,相对标准偏差为2.8%~6.6%。1,3,5-,1,2,4-和1,2,3-TCB的方法检出限分别为1.5 g/L,0.5 g/L和2.0 g/L。该方法与顶空、液液萃取和固相萃取法相比具有检出限低、富集因子高、重现性好、操作简便、干扰小等优点。采用本方法对5个实际海水样品中的TCBs进行了定量检测,结果表明其中两种样品含有2~3种待测物,浓度范围为1.9~6.7 g/L。  相似文献   

10.
用三氯甲烷萃取水中的四乙基铅,直接在石墨炉原子吸收仪上进行测定。结果表明:本方法的相对标准偏差为5.9%,平均回收率在90.4%~108%之间,检出限为1.3×10^-5mg/L,准确度高,精密度好。  相似文献   

11.
采用30%N902从除杂后的电镀污泥氨浸液中回收金属镍。在萃取原料液pH=9,相比(A/O)=2:1,反应时间为5min条件下可使镍的萃取率达到99%。负载有机相经水洗后,用2mol/L A/O=1:1的硫酸进行反萃,反萃时间为30min,反萃级数为8级,得到产品硫酸镍。硫酸镍溶液中镍离子含量〉90g/L,其它杂质达到产品质量要求。  相似文献   

12.
以国际腐殖质协会(IHSS)推荐的胡敏酸提取方法为基础,以去有机质土壤中添加胡敏酸所配制的土壤为研究对象,引入超声作为胡敏酸提取的辅助条件,采用批次试验优化了土壤中胡敏酸的提取方法。结果表明,基于胡敏酸提取回收率和精密度,在室温下获得的优化提取方法为:液土比为8:1、提取次数为3次、Na OH溶液浓度为0.05 mol/L、超声功率为120 W、超声时间为30 min;在此优化条件下,胡敏酸的回收率为94.73%±1.50%,显著大于IHSS推荐方法的回收率64.76%±0.28%,变异系数CV为1.59%、小于10%。相对于IHSS提取法,此优化提取法具有胡敏酸提取回收率高、资源节约、胡敏酸变性小、提取时间短等优点。  相似文献   

13.
采用酸碱法溶出电脑线路板中的贱金属,用王水制备金贵液,然后选用萃取容量较大的甲基异丁基甲酮进行萃金研究,结果表明:在相比为0.6、振荡萃取频率(100 r/min)、萃取时间15 min、温度40℃时,MIBK萃金的效果最佳,一次萃取率可达到97.14%,当金贵液中金含量大于30μg时,在以上条件下,萃取率可达到98%以上;选用5%的草酸进行金的反萃取,在70℃反萃40 min其反萃率可达98%以上;在120℃条件下蒸馏、冷凝回收有机相中的甲基异丁基甲酮,其回收率大于98%,节约萃取成本的同时,可提高试剂的利用效率。  相似文献   

14.
以电子废料中的金为研究对象,用统计学方法对甲基异丁基甲酮(MIBK)萃取电子废料中金的影响因素进行了探讨和分析.同时,通过Plackett-Burman实验设计筛选出相比、萃取时间和萃取温度为主要影响因素,并应用响应面方法分析得到了这3个因素的优化结果.数据统计分析结果表明,最佳的萃取条件为相比0.58、萃取时间9.0min、萃取温度20℃,在此条件下金的萃取率最高可达98.36%.萃取液经质量分数5%的草酸溶液还原,反萃金的回收率可达到96.2%.  相似文献   

15.
优化了对水中11种有机磷农药检测的样品保存方法。加标水样在4℃下保存一定时间后,通过液液萃取,气相色谱-质谱(选择离子模式)法测定有机磷农药的回收率。在不加入稳定剂的情况下,水样的保存时间不宜超过16h。为延长样品的保存时间,向水样中加入有机溶剂和pH调节剂作为稳定剂。实验结果表明,当在1000ml样品中加入10ml正己烷和10mlpH=3.6的醋酸-醋酸钠缓冲溶液时,可以将样品保存时间延长至48h。为验证方法的有效性,以地表水作为实际水样,加标浓度水平在0.2μg/L和0.04μg/L时,48h后的平均加标回收率在76.2%-95.0%之间,RSD在2.4%-7.2%之间。  相似文献   

16.
以高含水率生活垃圾为研究对象,研究了不同的通风温度(室温、40℃低温、55℃中温、65℃高温)对生物干化的影响。结果表明,通风温度变化对堆体温度影响较小;高温通风(65℃)能有效地降低垃圾含水率,但不利于有机物的降解,产物的挥发性固体(VS)和可生物降解物质(BDM)值最高,稳定度最低;经过15 d的干化作用,4组反应器垃圾含水率显著降低,水分去除率分别为77.99%,79.37%,79.85%,79.47%;另外还伴随着厨余和纸张的降解;通风温度与热值提升呈正相关关系,各组出料的湿基低位热值分别为7 202 kJ/kg,9 276.4 kJ/kg,9 358.5 kJ/kg,10 064 kJ/kg,分别提高了72.2%,122.7%,123.7%,140.6%。  相似文献   

17.
建立了水中6种拟除虫菊酯类农药的超高压液相色谱/质谱联用分析方法.对液相色谱和质谱两方面条件进行优化,采用多反应监测(MRM)模式分析,各组分在0.005~0.1 mg/L范围内线性关系良好,相关系数(R)均大于0.998;6种拟除虫菊酯类农药的最低检出限为0.000 5 ~0.002 mg/L,其中,溴氰菊酯的方法检出限满足《地表水环境质量标准》限值要求;各组分的加标回收率在92.8%~103%;相对标准偏差(RSD)均小于5%(n=6).该方法简单、快捷,可用于实际水样的直接测定.  相似文献   

18.
HBCD(六溴环十二烷,hexabromocyclododecane)是一种常用的溴代阻燃剂,其对环境和生物体造成的影响已被定性为持久性有机污染物.为了建立超声波提取、气相色谱检测土壤中w(HBCD)的方法,分别对超声波提取HBCD条件及气相色谱检测HBCD参数进行优化,并对超声波提取法与索氏提取法进行了比较.结果表明:①最佳超声波提取土壤中HBCD条件为以体积比为1:1的正己烷:丙酮溶液为提取溶剂,60℃水浴振荡,超声波提取50 min.②气相色谱优化后提取HBCD的最佳分离条件为进样口温度240℃;初始温度90℃,保留1 min;升温程序为90℃时以15℃/min升温至160℃,保留2 min,再以10℃/min升至220℃,保留2 min,最后以5℃/min升至280℃,保留3 min;分流模式为不分流;以氮气为载气;进样量为1 μL;FID检测器温度为300℃.③HBCD在土壤中的平均回收率可达97.1%,相对标准偏差为3.5%,方法精密度高.④与索氏提取方法相比,超声波提取法提取时间短、样品用量少、灵敏度高,并且方法重现性和精密度较好,能更有效地分析土壤中w(HBCD).研究显示,场地土壤中w(HBCD)平均值为0.757 mg/kg,相对标准偏差为4.22%(小于5%),超声波提取及气相色谱检测土壤中HBCD的方法准确度高、重现性好,对分析土壤中HBCD更加简便快捷.   相似文献   

19.
为了解生物炭对水中Cr(Ⅵ)的吸附效果,本文选用蔬菜废物豆角秸秆为原材料,采用限氧升温法在400℃和700℃温度下制备了两种生物炭。并研究了投加量、初始浓度、pH值、吸附时间、温度等因素对生物炭吸附Cr(Ⅵ)的影响。研究结果表明,2种豆角秸秆生物炭对水中Cr(Ⅵ)均有较好的吸附率,吸附最佳条件略有不同;D400对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于40mg·L^-1,pH值2—3;D700对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于60mg·L^-1,pH值2—4;基本达到吸附平衡的时间均为60min;温度对生物炭吸附Cr(Ⅵ)的影响很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号