首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Sulfide dioxide(SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone(SZ) and immobilized zone(IZ), was applied to treat SO2 for 6 months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85%removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80 g/(m3·hr) for the SZ and 1.50 g/(m3· hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16 S r DNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones.The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria.This work presents a potential biological treatment method for waste gases containing hydrophilic compounds.  相似文献   

2.
The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In the process, activated carbon impregnated with H2SO4(H2SO4/C) is employed. Ammonia in the waste gas reacts with H2SO4 on the adsorbent instantaneously and completely to form (NIL)2SO4. The H2SO4/C adsorbent is high in NH3 adsorption capacity and regenerable. The NH3 removal capacity of this regenerable adsorbent is more than 30 times that of the adsorbents used normally in the industry. The spent H2SO4/C is regenerated by flowing low-pressure steam through the adsorbent bed to remove the (NH4)2SO4 from the adsorbent. The regeneration by-product is concentrated (NH4)2SO4 solution, which is a perfect liquid fertilizer for local use. Re-soaking the activated carbon with H2SO4 solution rejuvenates the activity of the adsorbent. Thus the H2SOJC can be reused repeatedly. In the mechanism of this reactive adsorption process, trace of H20 in the waste gas is a required, which lends itself to treating ammonia gas saturated with moisture from biodegradation of animal urine.  相似文献   

3.
This paper presents the experimental investigations of the emissions of SO2, NO and N2O in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N2O were proposed.  相似文献   

4.
Simultaneous removal of SO2 and NO from flue gas by the highly active absorbent prepared from fly ash, lime and a few oxidizing manganese compound additive was studied using a flue gas circulating fluidized bed (CFB) under different experimental conditions. The effects influencing the removal effiencies were discussed. The optimal flue gas temperature, flue gas humidity, gas velocity of CFB and Ca/(S+N) molar ratio with this process were approximately 110℃, 6%, 1.8 m/s and 1.05, respectively. Removal efficiencies of 92.3% for SO2 and 60.88% for NO were obtained under the optimal experimental conditions. While the spent absorbent appeared in the form of dry powder, the mechanism of removal for SO2 and NO based on the highly active absorbent was investigated by a scanning electron microscope (SEM), a X-ray energy spectrometer and the chemical analysis methods. The valuable references can be provided for industrial application by the process. The foreground of application will be vast in China and in the world.  相似文献   

5.
Effects of SO2 pollution on growth of the army worm, Mythimna separata, were investigated by rearing the larvae for 12 days on the wheat plants being exposed to SO2 levels ranged from 50 to 200 ppb in the field open-top fumigation devices. Larval period shortened while their mean relative growth rate (MRGR) increased as SO2 dose elevated. Similar experiment with the insect on the artificial diet excluded the possibility that SO2 pollution directly stimulated growth of the army worm.The patterns of change in amino acid hydrolysates in the host foliage suggested that contents of methionine, and perhaps, arginine in food material exposed to unpolluted air were at such levels that they could only support sub-optimum growth of the insect, and SO2 pollution increased concentrations of these limiting amino acids, resulting in better performance of the larvae.  相似文献   

6.
To achieve “waste controlled by waste”, a novel wet process using KMnO4/copper converter slag slurry for simultaneously removing SO2 and NOx from acid-making tail gas was proposed. Through the solid-liquid separation for copper slag slurry, the liquid-phase part has a critical influence on removing NOx and SO2. Also, the leached metal ions played a crucial role in the absorption of SO2 and NOx. Subsequently, the effects of single/multi-metal ions on NOx removal was investigated. The results showed that the leached metal from copper converter slag (Al3+, Cu2+, and Mg2+) and KMnO4 had a synergistic effect on NOx removal, thereby improving the NOx removal efficiency. Whereas Fe2+ had an inhibitory effect on the NOx removal owing to the reaction between Fe2+ and KMnO4, thereby consuming the KMnO4. Besides, SO2 was converted to SO42? completely partly due to the liquid catalytic oxidation by metal ions. The XRD and XPS results indicated that the Fe (II) species (Fe2SiO4, Fe3O4) in copper slag can react with H+ ions with the generation of Fe2+, and further consumed the KMnO4, thereby resulting in a decrease in the NOx removal. The characterization of the slags and solutions before and after reaction led us to propose the possible mechanisms. The role of copper slag is as follows: (1) the alkaline substances in copper slag can absorb SO2 and NO2 by KMnO4 oxidation. (2) copper slag may function as a catalyst to accelerate SO2 conversion and improve NOx removal by synergistic effect between leached metal ions and KMnO4.  相似文献   

7.
With the increasing demand for fossil based energy and implementation of progressively strict environmental pollution control standards, treatment of a large amount of co-produced waters (CPWs) from fossil based energy production has become increasingly important. Removal of bicarbonate with H2SO4 has been recently studied as a simple and cost-e ective method to decrease the alkalinity of CPWs. The present work investigates the kinetics of the reaction between H2SO4 and NaHCO3, which could provide the base for scaling-up the CPW treatment technology. Based on the measured quantity change of the CO2 gas generated from the reaction between H2SO4 and NaHCO3 with time under specified initial reaction conditions, the reaction orders with respect to H2SO4 and NaHCO3 were determined. Experiments were also conducted within the temperature of 15–30°C to find various global rate coe cients of the reaction to calculate the activation energy and the pre-exponential factor of the empirical Arrhenius form of the bicarbonate removal reaction, which are 197.7 kJ/mol and 3.13 1034 (mol??3:7 L3:7 sec??1), respectively.  相似文献   

8.
Any accurate simulation of regional air quality by numerical models entails accurate and up-to-date emissions data for that region.The INTEX-B2006 (I06),one of the newest emission inventories recently popularly used in China and East Asia,has been assessed using the Community Multiscale Air Quality model and observations from regional atmospheric background stations of China.Comparisons of the model results with the observations for the species SO2,NO 2,O 3 and CO from the three regional atmospheric background stations of Shangdianzi,Longfengshan and Linan show that the model can basically capture the temporal characteristics of observations such as the monthly,seasonal and diurnal variance trends.Compared to the other three species,the simulated CO values were grossly underestimated by about two-third or one-half of the observed values,related to the uncertainty in CO emissions.Compared to the other two stations,Shangdianzi had poorer simulations,especially for SO2 and CO,which partly resulted from the site location close to local emission sources from the Beijing area;and the regional inventory used was not capable of capturing the influencing factors of strong regional sources on stations.Generally,the fact that summer gave poor simulation,especially for SO2 and O 3,might partly relate to poor simulations of meteorological fields such as temperature and wind.  相似文献   

9.
The variations of sulfate formation and optical coe cients during SO2 heterogeneous reactions on hematite surface under di erent SO2 concentrations were examined using in situ di use reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatograph (IC). Laboratory experiments revealed that within ambient SO2 of 0.51–18.6 ppmv, sulfate product, producing velocity, absorption and backward scattering coe cients showed an increasing trend with SO2 concentration. Under given SO2 concentration, the velocity of sulfate producing performed an evolution of initial increasing, midterm decreasing and final stabilizing. The reactive uptake and Brunauer-Emmett-Teller (BET) uptake coe cients of heterogeneous reactions rose with SO2 and exhibited high reactivities. Considering global warming, this result is important for the knowledge of heterogeneous reactions of SO2 on mineral particle surface in the atmosphere and the assessment of their impacts on radiative forcing.  相似文献   

10.
A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncertainty in the source-receptor-specific transfer coefficients. Based on the calculation of SO2 and sulfate average residence time for Liuzhou City, a sulfur deposition model has been developed and the distribution of transfer coefficients have been found to be approximately log-normal. Sulfur removal minimization of the model shows that the abatement of emission sources in the city is more effective, while control cost optimization provides the lowest cost programmes for source abatement at each allowable deposition limit under varied environmental risk levels. Finally a practicable programme is recommended.  相似文献   

11.
燃煤烟气中的SO2和NOx是大气中重要的污染物,开发高效、经济的同步脱硫脱硝技术是环保领域的研究热点。针对现有同步脱硫脱硝技术存在的氧化剂成本较高和产物不能资源化利用等突出问题,提出了软锰矿浆烟气同步脱硫脱硝,并副产硫酸锰和硝酸锰的资源化新工艺。研究结果表明:软锰矿浆可以有效的脱除烟气中的SO2和NOx,反应产物分别为硫酸锰和硝酸锰。在烟道中注入臭氧,将难溶于水的NO快速氧化为NO2,可大大提高脱硝效率,在O3/NO=1.2的条件下可以达到72%的脱硝率、90%的脱硫率和85%的锰浸出率;吸收液经过空气氧化除铁和加入铜试剂除重金属后,结晶分离溶液得到的硫酸锰和硝酸锰可分别达到HG/T 2962—1999标准的硫酸锰产品和HG/T 3817—2006标准的工业硝酸锰产品要求。该工艺实现了SO2和NOx污染治理与低品位软锰矿资源化利用的双重目的,为SO2和NOx的资源化污染治理技术的开发和应用提供了新的思路。  相似文献   

12.
软锰矿催化氧化二氧化硫的过程与机理研究   总被引:1,自引:0,他引:1  
通过实验室模拟废气脱硫实验,研究了软锰矿浓度、氧含量、废气流量、SO2浓度和操作温度对脱硫成酸的影响,结果表明:低浓度软锰矿浓度对废气中SO2发生显著的催化氧化作用,当软锰矿浓度>500mg/L时,脱硫效率可达80%。氧对软锰矿催化氧化SO2发挥了重要作用,应>10%。废气流量和进口SO2浓度对成酸作用影响较小,操作温度为60℃最好。软锰矿催化脱硫的机理分析表明,过程是液相Mn、Fe协同催化与固相催化作用相结合。  相似文献   

13.
氨法烟气脱硫工艺是一种资源回收型技术,符合国家节能减排、可持续发展政策,能够实现经济循环发展.通过建立烟气脱硫装置,参照脱硫工艺运行参数,采用氨水作为吸收剂,在降膜式湿壁塔中对氨法烟气脱硫过程进行实验研究.考察了吸收液进塔pH值、液气比、烟气流速、烟气进口SO2浓度、烟气温度对脱硫率的影响,并从理论上分析运行参数对脱硫...  相似文献   

14.
介绍软锰矿、菱锰矿吸收SO2烟气制取硫酸锰的新方法和新技术,在热电分厂锅炉排放烟气综合治理中的应用研究。通过吸收塔的循环吸收、压力过滤、净化、热结晶、离心分离和干燥等工艺过程,该技术不仅可使除尘效率≥90%,SO2吸收率≥92%,实现SO2和烟尘的达标排放,而且还可获得质量达到工业二级品的脱硫副产品硫酸锰。  相似文献   

15.
氨法烟气脱硫工艺实验研究   总被引:5,自引:0,他引:5  
利用亚硫酸铵作为吸收剂进行氨法烟气脱硫模拟实验,主要考察了吸收液进塔pH值、液气比、吸收液浓度、进口SO2浓度、进口烟气温度等主要影响因素对脱硫效率的影响,并从理论上分析了它们之间的内在关系,得出了适宜的操作条件范围。  相似文献   

16.
FeSO_4液相催化氧化烟气脱硫实验研究   总被引:1,自引:0,他引:1  
在填料塔中进行了FeSO4 液相催化氧化烟气脱硫的实验。通过正交实验确定了各因素对脱硫率影响大小 ,得到了实验范围内最有利脱硫的条件。进一步研究了空塔气速、吸收温度和SO2 入口浓度对脱硫率的影响 ,确定了适宜操作条件 ,在此条件下连续运行 ,80min内脱硫率逐渐下降 ,之后脱硫率下降趋缓 ,反应进行到 180min时脱硫率达 5 1.2 % ,吸收液 pH与脱硫率变化几乎同步 ,且具有一定的缓冲能力  相似文献   

17.
钠钙双碱法烟气脱硫主要影响因素的实验研究   总被引:8,自引:0,他引:8  
采用纤维栅洗涤器在实验室对钠钙双碱法烟气脱硫效率的主要影响因素 :洗涤器的风速、烟气SO2 初始浓度、吸收液 p H值及 [Na+ ]浓度、液气比等进行了模拟实验 ,得出了它们与烟气脱硫效率的关系。  相似文献   

18.
O2+、O3同时脱硫脱硝实验   总被引:1,自引:0,他引:1       下载免费PDF全文
针对目前的烟气同时脱硫脱硝方法中存在的投资成本、运行费用、占地面积大等问题,研究强电离放电方法产生高浓度氧活性粒子(O2+、O3)注入烟气外排管道中,进行O2+、O3消除烟气中的NO, SO2转化成HNO3, H2SO4的等离子化学反应.描述强电离介质阻挡放电制取O2+、O3原理和烟道中O2+与H2O反应形成·OH及其氧化脱硫脱硝反应机制,分析回收酸液中的酸根离子种类及浓度.在O2+、O3与NO+SO2的物质的量比为5,烟气温度为65℃,H2O体积浓度为10%,停留时间为1s的实验条件下,脱硝脱硫率分别为97.4%,83.2%.  相似文献   

19.
活性焦负载MnO2对气态Hg0的吸附脱除研究   总被引:1,自引:0,他引:1  
研究了活性焦(AC)及负载MnO2的活性焦(MnO2/AC)对气态Hg0的吸附脱除,发现负载MnO2到AC明显提高了其对Hg0的吸附脱除能力.考察了MnO2负载量、温度、Hg0浓度和烟气成分等对MnO2/AC吸附脱除Hg0的影响.结果表明,MnO2/AC对Hg0的吸附脱除能力随MnO2负载量的增加而增强;在120~200℃的温度范围内,随着温度升高,MnO2/AC对Hg0的吸附脱除能力增强;O2和HCl对MnO2/AC吸附脱除Hg0具有促进作用,而SO2和H2O具有抑制作用.SEM-EDX和逐级化学提取结果证实,MnO2将Hg0催化氧化为HgO并吸附在AC上,这是MnO2/AC具有较高的吸附脱除Hg0能力的原因.  相似文献   

20.
研究了软锰矿与锰氧化细菌、氧化亚铁硫杆菌催化氧化二氧化硫的过程,探讨了细菌在软锰矿脱硫体系中所起的作用。结果表明:锰氧化细菌粘附于软锰矿上,氧化Mn(Ⅱ)为Mn(Ⅲ)、Mn(Ⅳ),强化软锰矿催化氧化二氧化硫效果;锰氧化细菌促进脱硫存在一个适应期,其后的强化作用随细菌浓度增加而增加;锰细菌与铁细菌存在协同效应,并与菌液组成的比例有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号