首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
刘炳杰  彭晓敏  李继红 《环境科学》2018,39(12):5296-5307
土地利用回归(LUR)模型是模拟大气污染物浓度时空分异最主要、最体系化的方法之一,为了探索LUR模型在中国国家尺度空气污染物模拟的适应性,挖掘中国2015年空气细颗粒物(PM_(2.5))的时空变化特征及其与不同地理要素相关关系,以2015年国家控制监测站点PM_(2.5)数据为因变量,土地利用类型、地形地貌、人口、道路交通与气象要素等影响因素为自变量,构建基于地理加权的LUR模型,通过模型回归制图得到2015年全国月均与年均PM_(2.5)浓度分布图,以胡焕庸线为参考线分析中国2015年PM_(2.5)浓度的时空变化特征.结果表明,引入地理加权算法的LUR模型残差Moran'sⅠ显著降低,残差空间自相关性明显减弱,判别系数R2明显提高,更好地揭示出PM_(2.5)空间分布和各影响因子间的复杂关系;耕地、林地、草地和城镇居民工矿用地以及气象要素、主干道路对PM_(2.5)浓度的影响比较显著.不同地理要素的不同空间分布对PM_(2.5)影响作用不同;胡焕庸线两侧PM_(2.5)表现出明显的时空差异,人口规模大、工业化水平高的发达城市PM_(2.5)浓度较高; PM_(2.5)浓度在冬季月份较高,秋季、春季、夏季月份污染情况逐渐减弱.  相似文献   

2.
联合治理分区下PM_(2.5)关联关系时空变异特征识别对中国大气污染防治意义重大.本文主要基于2000~2016年遥感反演的中国大陆334个地级市PM_(2.5)浓度数据,利用空间单元聚合策略与地理时空加权回归技术,系统分析了大气污染联合治理分区视角下的中国PM_(2.5)关联关系时空变异特征.结果表明:①以PM_(2.5)为首要污染物,综合考虑污染程度、地理位置、气象、地形和经济等因素可将中国大陆地区划分为10个大气污染联合治理区.②地理时空加权回归能够有效刻画PM_(2.5)与关联因素间的时空非平稳关系.同时,人口规模、第二产业生产总值、SO_2排放量、年平均气温、年降水量以及年平均相对湿度被识别出对PM_(2.5)浓度的变化影响存在显著时空差异.③人口规模对PM_(2.5)浓度的影响程度各年最大的地区均为京津冀蒙区域;川渝滇黔区域中第二产业生产总值对PM_(2.5)浓度影响程度变异度最大,在黑吉辽区域之外,SO_2排放量回归系数值均先随时间逐渐减小再增大最后又减小;各治理区中年平均温度对PM_(2.5)影响程度的时间变异程度较小;而年降水量与年平均相对湿度对PM_(2.5)影响程度在各区域中呈现不同的变异特征.  相似文献   

3.
利用LUR模型模拟杭州市PM2.5质量浓度空间分布   总被引:2,自引:0,他引:2  
汉瑞英  陈健  王彬 《环境科学学报》2016,36(9):3379-3385
模拟城市大气污染物浓度空间分布对研究城市空气质量及人体健康至关重要.本研究利用土地利用回归模型(Land Use Regression,LUR),提取包括污染点源因子、交通因子、人口因子、土地利用因子和气象因子等60个预测因子,基于地理加权算法(GWR)建立春、夏、秋、冬四个季节的模型,实现对杭州地区近地表PM_(2.5)质量浓度空间分布的预测.结果表明:基于地理加权回归算法时,检验模型的R2值分别达到0.76(春季)、0.70(夏季)、0.73(秋季)、0.76(冬季),模型能够解释PM_(2.5)浓度值80%以上的变异.每个季度杭州地区PM_(2.5)浓度变化不尽相同,但总体以杭州中部最高,西南部偏低.研究说明基于LUR模型模拟大尺度地区PM_(2.5)质量浓度空间分布是可行的.  相似文献   

4.
基于地理加权模型的我国冬季PM2.5遥感估算方法研究   总被引:3,自引:0,他引:3  
为了分析冬季我国区域范围内近地面PM_(2.5)质量浓度时空分布特征,根据卫星遥感反演PM_(2.5)质量浓度的基本原理,综合考虑我国不同地区的PM_(2.5)污染特征的空间差异性,基于卫星遥感、气象模式资料及同期地面观测的PM_(2.5)质量浓度数据采用地理加权模型进行回归分析,研究构建了我国区域范围内近地面PM_(2.5)遥感反演模型.结果表明:在冬季暗像元反演AOD算法受限制的情况下,深蓝算法产品可以一定程度上弥补暗像元算法的不足,将二者有效融合能同时提高AOD产品的精度和空间覆盖度;利用地理加权回归模型进行全国区域PM_(2.5)遥感估算,既能体现全国PM_(2.5)时空分布的全局变化特性,又能从局部体现全国PM_(2.5)组分、污染程度及垂直分布结构特征的空间差异特性,基于地理加权回归模型的PM_(2.5)遥感反演结果(R2=0.7)明显优于多元线性回归模型(R2=0.56);2013年12月—2014年2月份全国PM_(2.5)空间分布呈现明显的区域特征,PM_(2.5)浓度较高的地方主要分布在华北南部、长三角中部和北部、华中东部及四川东部等地,西部和北部地区PM_(2.5)污染相对较轻;从时间变化来看,全国冬季12月份PM_(2.5)污染最重,1月份次之,2月份相对最低.这可为全国PM_(2.5)区域联防联控提供有力的信息支撑.  相似文献   

5.
基于2013—2015年南昌市9个空气环境监测点的连续数据,分析了空气PM_(2.5)、PM_(10)质量浓度(以下简称浓度)的时空变异规律,并以景观格局指数为定量指标,研究了监测点的两种颗粒物浓度与其周边500 m半径、1000 m半径缓冲区的土地利用状况的关系.结果表明:(1)南昌市3年来PM_(2.5)和PM_(10)浓度逐年显著降低.(2)通过聚类分析,9个监测站依据颗粒物污染可分为4大类,表现出一致的城乡梯度差异.(3)在斑块类型水平上,PM_(2.5)和PM_(10)浓度与500、1000 m半径缓冲区的C-PLAND(建筑用地覆盖率)、C-SHDI(建筑用地多样性指数)显著正相关,与1000m缓冲区的F-ED(林地边界密度)显著正相关;与F-PLAND(林地覆盖率)、C-Fi(建筑用地分离度指数)、F-MPS(林地平均斑块面积)显著负相关.在景观水平上,PM_(2.5)和PM_(10)浓度在500 m缓冲区与LPI(最大斑块所占景观比例)显著负相关;与1000 m缓冲区的MPS(平均斑块面积)显著负相关.景观格局指数直接反映土地利用状况,它与PM_(2.5)和PM_(10)浓度的相关性,表现出生态学中典型的"源汇景观"关系.  相似文献   

6.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:3,自引:1,他引:2       下载免费PDF全文
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

7.
中国PM2.5污染空间分布的社会经济影响因素分析   总被引:1,自引:0,他引:1  
段杰雄  翟卫欣  程承旗  陈波 《环境科学》2018,39(5):2498-2504
中国的细颗粒物(PM_(2.5))污染具有危害性强、覆盖范围大、空间分布不均匀的特点.本研究以2015年中国PM_(2.5)监测站点数据为基础,尝试结合空间分析的方法,对PM_(2.5)污染空间分布的社会经济影响因素进行分析.首先以省级行政区划为基本单元,选取Moran's I指数和局部自相关指数(LISA)分析PM_(2.5)在国家尺度上的分布特征.然后利用普通最小二乘回归模型(OLS)和地理加权回归模型(GWR)分析PM_(2.5)浓度的空间分布和各项社会经济指标的相关性.结果表明,GWR模型比OLS模型更好地揭示出PM_(2.5)浓度分布和各项因素之间的关系.PM_(2.5)浓度在空间分布上存在以京津冀为中心的高浓度聚集区向四周逐渐递减,在广西、四川等南部省份形成低浓度聚集区的空间分布结构.另外,森林覆盖率和人均电力消费量与PM_(2.5)浓度显著负相关,人均私家车保有量和PM_(2.5)浓度显著正相关,其中人均私家车保有量是对PM_(2.5)浓度影响最大的因素.  相似文献   

8.
随着我国经济、工业化、城市化进程迅速发展,PM_(2.5)污染在中国已经成为一个极端的环境和社会问题,并引起广泛关注.采用新技术估算的地表PM_(2.5)质量浓度,收集并处理了遥感反演的气溶胶光学厚度(AOD),气象数据,其他地理数据和污染物排放数据,采用贝叶斯最大熵(BME)结合地理加权回归(GWR)来分析2015年冬季的PM_(2.5)暴露在我国东部大范围区域的时空变异特征.结果表明,BME模型的十折交叉验证结果的决定系数R~2为0.92,均方根误差(RMSE)为8.32μg·m~(-3),平均拟合误差(MPE)为-0.042μg·m~(-3),平均绝对拟合误差(MAE)为4.60μg·m~(-3),与地理加权回归模型的结果相比(R~2=0.71,RMSE=15.68μg·m~(-3),MPE=-0.095μg·m~(-3),MAE=11.14μg·m~(-3)),BME的预测结果有极大的提高.空间上,PM_(2.5)高浓度地区主要集中在华北、长江三角洲、四川盆地,低浓度地区主要集中在中国的最南部如珠江三角洲和云南的西南部;时间上,不同月份的研究区域PM_(2.5)空间分布所有差别,2015年的12月、2016年1月PM_(2.5)污染最为严重,2015年的11月,2016年的2月污染相对较低.  相似文献   

9.
重庆市主城区PM2.5时空分布特征   总被引:6,自引:3,他引:3  
利用2014年6月1日至2015年5月31日重庆市主城区17个国控空气质量监测站24 h自动连续采样的PM_(2.5)浓度数据,探讨了重庆市主城区PM_(2.5)时空分布特征.结果表明:1重庆市主城区PM_(2.5)季节浓度由高到低依次为冬季(100.2μg·m~(-3))、秋季(66.1μg·m~(-3))、春季(45.9μg·m~(-3))和夏季(33.4μg·m~(-3))(P0.05).2重庆市主城区PM_(2.5)月均浓度变化呈单峰单谷型,1月PM_(2.5)月均浓度最高(P0.05),达到120.8μg·m-3.3逐日变化,国控17个空气质量监测站PM_(2.5)日均浓度曲线都呈现出尖峰和深谷交替变化的锯齿状.4重庆市主城区16个国控监测点(除缙云山对照点)PM_(2.5)浓度日变化在全年、春季、秋季和冬季都呈现明显的双峰双谷型.5PM_(2.5)与SO_2、NO_2和CO都呈显著正相关(P0.01),表明SO_2、NO_2和CO的二次转化对PM_(2.5)浓度具有显著影响.  相似文献   

10.
降水和风对大气PM2.5、PM10的清除作用分析   总被引:2,自引:0,他引:2  
对合肥2015—2017年的降水、风和PM_(2.5)、PM_(10)浓度观测数据统计研究发现,降水对PM_(2.5)、PM_(10)有一定的清除作用,尤其在秋冬季节.秋冬季节小雨、中雨分别导致PM_(2.5)和PM_(10)浓度降低23.1%、40.4%和32.0%、63.7%.雨日PM_(2.5)/PM_(10)比例上升8.4%,表明降水对PM_(10)清除作用更显著.降水前后PM_(2.5)浓度变化与降水前PM_(2.5)浓度、降水强度、降水时长密切相关.当降水强度大于4 mm·h~(-1)或PM_(2.5)初始浓度高于115μg·m~(-3)时,降水对PM_(2.5)产生明显清除作用;而降水强度小于1 mm·h~(-1)或PM_(2.5)初始浓度低于115μg·m~(-3)时由于吸湿增长作用极易造成PM_(2.5)浓度反弹升高;且持续3 h以上雨强介于1~4 mm·h~(-1)的降水也对PM_(2.5)产生清除作用.降水前后PM_(10)浓度变化与初始浓度密切相关,而与雨强相关性较弱.当PM_(10)初始浓度大于50μg·m~(-3),降水就对PM_(10)产生明显清除作用,且PM_(10)初始浓度越高,降水后PM_(10)浓度下降越多.风速大于2 m·s~(-1)可显著降低PM_(2.5)浓度,因此,当风速大于4 m·s~(-1)时合肥较少出现中度及以上污染,但易造成地面起尘,使PM_(10)浓度不降反升.合肥冬季严重污染主要出现在西北风向,夏季中度以上污染天气较少,主要出现在风速低于3 m·s~(-1)的东南风向.  相似文献   

11.
Trajectory clustering, potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) methods were applied to investigate the transport pathways and identify potential sources of PM2.5 and PM10 in different seasons from June 2014 to May 2015 in Beijing. The cluster analyses showed that Beijing was affected by trajectories from the south and southeast in summer and autumn. In winter and spring, Beijing was not only affected by the trajectories from the south and southeast, but was also affected by trajectories from the north and northwest. In addition, the analyses of the pressure profile of backward trajectories showed that backward trajectories, which have important influence on Beijing, were mainly distributed above 970 hPa in summer and autumn and below 950 hPa in spring and winter. This indicates that PM2.5 and PM10 were strongly affected by the near surface air masses in summer and autumn and by high altitude air masses in winter and spring. Results of PSCF and CWT analyses showed that the largest potential source areas were identified in spring, followed by winter and autumn, then summer. In addition, potential source regions of PM10 were similar to those of PM2.5. There were a clear seasonal and spatial variation of the potential source areas of Beijing and the airflow in the horizontal and vertical directions. Therefore, more effective regional emission reduction measures in Beijing''s surrounding provinces should be implemented to reduce emissions of regional sources in different seasons.  相似文献   

12.
天津市多发生以PM2.5为首要污染物的重污染事件,明确ρ(PM2.5)时空分布特征及重污染过程来源对PM2.5的综合治理意义深远.利用天津市2014-2017年环境资料和2016年气象资料,结合WRF-Chem模式研究了天津市ρ(PM2.5)时空分布特征及重污染过程来源.结果表明:①自2014年以来,天津市ρ(PM2.5)呈逐年下降趋势.②ρ(PM2.5)月变化曲线呈"U"型分布,呈冬春季高、夏秋季低的季节性特征;ρ(PM2.5)日变化呈双峰型分布,主峰值出现在08:00-09:00,次峰值出现在21:00-翌日00:00.③各季节天津市ρ(PM2.5)空间分布不同,春季、夏季、秋季和冬季高值中心分别位于天津市西南部的静海区、中心城区北部的北辰区、西部的武清区及北部的蓟州区.④WRF-Chem模式模拟的天津市秋冬季污染物来源结果表明,本地源贡献率为56%,外来源输送贡献率为44%,其中以河北省和山东省的输送为主.2016年12月16-22日天津市一次重污染过程的模拟结果表明,天津市本地源贡献率为49.6%,河北省、北京市和山东省的外来源输送贡献率分别为32.2%、7.0%和2.2%.污染前期,不利气象条件和外来源输送造成天津市ρ(PM2.5)聚集并形成重度污染;污染持续过程中,本地源贡献率逐渐增大并占主导地位.研究显示,近年来天津市ρ(PM2.5)呈下降趋势,并有明显的空间分布特征.   相似文献   

13.
海口市PM_(2.5)和PM_(10)来源解析   总被引:2,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

14.
基于福州市区2015年2月—2016年1月间的大气PM_(2.5)监测数据,综合运用HYSPLIT后向轨迹模式、潜在源贡献因子法(WPSCF)与浓度权重轨迹分析(WCWT)等方法,探讨了福州市区冬、春季PM_(2.5)污染特征和典型污染过程成因,总结了气象因子和污染来源的季节性差异.研究期间,冬、春季是福州市区PM_(2.5)污染的主要季节,福州市区不同类型站点的PM_(2.5)浓度在冬、春季污染发生时均呈现出整体升高的特点,但浓度日变化却存在季节性差异,冬季无显著日变化,春季则表现为单峰单谷特征.福州市区春季主要受锋前暖区和高压后部等天气系统影响,大气扩散条件差,PM_(2.5)极易在不利的气象条件下累积,福建沿海地区是其PM_(2.5)污染的主要潜在源区;冬季污染易受高压天气系统作用,盛行偏北风,长江三角洲地区的污染物输入会对福州市区空气质量产生较大影响,长江三角洲、浙江东南沿海、福建北部是其PM_(2.5)污染的主要潜在源区.  相似文献   

15.
该研究以浙江省2014-2019年PM2.5浓度数据为研究对象,应用多元线性回归和随机森林方法结合气象、植被、地形、经济、人口和基础设施等因子进行分析.研究结果表明PM2.5浓度时空分布不均匀,时间上季节变化差异显著,总体呈冬季>春季>秋季>夏季分布规律,每年呈下降趋势;空间上呈西北多东南少的分布特征.多元线性回归和随机森林模型显示日最低地表气温(MI-GST)、日最低气压(MI-PRS)、日蒸发量(EVP)、日最小相对湿度(MI-RHU)、月植被覆盖度(FVC)、日降水量(PRE)、日极大风速(MM-WIN)、日平均相对湿度(AV-RHU)、铁路密度(Railway)、日最大风速(MA-WIN)、日照时长(SSD)、海拔(DEM)、日平均风速(AV-WIN)和河流密度(River)等15个因子对PM2.5浓度影响显著;随机森林模型均方根误差(RMSE)、均方绝对百分比误差(MAPE)和变异解释量(R2)分别为0.133、17.83%和0.834,明显优于多元线性回归(0.278、40.48%和0.575),表明随机森林更适合浙江省PM2.5浓度估测,该研究揭示PM2.5时空分布及相关因子分析,为限制空气污染提供有效策略.  相似文献   

16.
陕西省PM2.5时空分布规律及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
PM2.5是导致中国多省市发生灰霾的罪魁祸首,明确其时空分布规律,厘清其影响因素对灰霾的综合治理意义深远.基于陕西省2015年50个监测站点的PM2.5浓度数据,采用空间数据统计方法、克里金插值法以及Morlet小波分析法对陕西省PM2.5浓度的时空分布规律进行研究,并运用灰色关联模型来探讨PM2.5浓度的影响因素.结果显示:①陕西省PM2.5浓度整体呈"冬高夏低、春秋居中"的季节性变化规律,"U型"起伏的月变化规律,周期性脉冲波动型的日变化规律以及"W型"起伏的时变化规律;②陕西省PM2.5浓度呈"北部低,中南部高"的空间分布特征,并且空间集聚性显著.不同季节的高值区均集聚于海拔相对较低的关中盆地内部城市.这与盆地内部空气不易扩散,静稳天气出现频率较高,易出现逆温现象密切相关;③影响陕西省PM2.5浓度最大的指标层是PM2.5污染来源(权重值为0.49),其次是城市化与土地利用(权重值为0.37),气象与地形因子影响最小(权重值为0.15).不同城市各指标层的综合关联度差异较大.④各指标因子与PM2.5浓度均为强度关联.降水量、机动车保有量、二氧化硫排放量、烟粉(尘)排放量、建成区面积、人口密度和人均GDP是影响陕西省PM2.5浓度的主要因子,影响各城市PM2.5浓度的主要因子具有一定的空间差异性.研究显示,人类活动对陕西省PM2.5的影响显著,尤其是城市化的快速推进,相关指标(如人口、机动车、能耗、工业总产值等)持续增长,将进一步加大PM2.5来源的多样性以及相关污染物的排放量.   相似文献   

17.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

18.
于文金  于步云  谢涛  苏荣 《环境科学学报》2016,36(10):3535-3542
基于GIS技术和岭回归分析方法,采用苏锡常地区的MODIS高分辨率气溶胶光学厚度资料、PM_(2.5)浓度观测资料和苏锡常及周边地区的气象观测资料,构建了基于气溶胶光学厚度和气象要素的PM_(2.5)地面浓度分布估算模型,模拟了2013年春季苏锡常地区PM_(2.5)的空间分布状况,并将此模型与气象要素多元回归模型、气溶胶光学厚度直接回归模型进行比较.结果表明:该模型将遥感观测资料与地面气象观测资料相结合,能够有效地模拟PM_(2.5)的空间分布状况;2013年春季苏锡常地区PM_(2.5)的空间分布具有整体上西北高、东南低,中心城区高、城郊区低的趋势,局部高浓度区域可能与工业生产、交通等人为因素有关;该模型能够在保持较高精度的前提下,有效地突出局部地区的变化特征,体现出更强的空间分异性,对于研究PM_(2.5)的空间分布规律具有一定的实际应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号