首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
水解酸化-反硝化-硝化组合工艺处理土霉素废水的效果   总被引:7,自引:0,他引:7  
采用水解酸化 反硝化 硝化的组合工艺对土霉素废水进行实验室规模连续处理 ,水解酸化和反硝化均采用上向流污泥床 ,硝化采用2个使用不同填料的生物膜反应器 ,稳定运行 70d .当进水COD和NH4+-N浓度分别为2200~3000mg/L和400~460mg/L时 ,该系统在总水力停留时间为56h的条件下 ,稳定实现80%以上的COD和TN去除率 .生物处理出水经48mg/L聚合硫酸铁(以铁计)处理后COD降至293mg/L,实现了废水的达标排放.  相似文献   

2.
微氧水解酸化处理石化废水的生物降解特性   总被引:6,自引:0,他引:6  
本研究采用微氧水解酸化技术处理石化废水,以抑制硫酸盐的还原,减少硫化氢的产生.同时,通过与厌氧水解酸化的对比试验,研究了微氧水解酸化的生物降解特性.微氧反应器的ORP控制在(-290±71)m V,厌氧反应器的ORP为(-398±31)m V.反应器运行近7个月的结果表明,在进水COD为202~514 mg·L-1、硫酸根浓度为350~650 mg·L-1及HRT为12 h时,微氧水解酸化反应器COD的平均去除率为31.2%,高于厌氧水解酸化的26.4%.厌氧出水的VFA浓度((2.34±0.60)mmol·L-1)高于微氧出水((1.89±0.48)mmol·L-1).微氧出水的平均比紫外吸收值(UV254/DOC)为0.017,显著低于厌氧出水(0.025),表明微氧环境可以提高兼性水解酸化菌的生理代谢功能,强化难降解芳香有机物和含共轭双键大分子化合物的去除.微氧水解酸化出水的硫离子浓度((0.11±0.04)mg·L-1)显著低于厌氧出水((1.27±1.22)mg·L-1).454焦磷酸测序结果表明:微氧水解酸化菌群中,变形菌门、绿弯菌门和放线菌门菌群丰度(所占比例分别为39.7%、20.3%、1.9%)高于厌氧水解酸化菌群(分别为36.9%、17.5%、1.3%),对难降解大分子有机物的去除效果好;厌氧水解酸化菌群中拟杆菌门和酸杆菌门所占比例较大,酸化效果更好.在属的水平上,微氧水解酸化污泥中鉴定出的硫酸盐还原菌的种群多样性和丰度均低于厌氧污泥,这与其出水较低的硫离子浓度一致,表明微氧环境能够有效抑制硫酸盐还原菌的活性.上述研究结果表明,微氧水解酸化是一种很有前途的石化废水预处理技术.  相似文献   

3.
超高温厌氧水解酸化特征与效果研究   总被引:8,自引:0,他引:8       下载免费PDF全文
在上流式水解反应器中接种经长期驯化的高温厌氧污泥,在 35,55,70℃条件下对淀粉生产废水进行了水解酸化动态和静态试验.对不同温度、不同停留时间的水解酸化效果和 3 个温度下水解酸化过程中 VFA、COD、SS、pH 值、硫酸盐、硫化物、碱度、蛋白质等变化特征及其机理进行了比较研究与评价.结果表明,超高温(70℃)酸化率、酸化速率以及 COD 和硫酸盐去除率均明显高于中温和高温的效果;动态试验中,其酸化率为 28.5%,酸化速率为 0.142h-1,COD 去除率为 24%,SS 去除率达到 86%, SO42-去除率为 32.5%,蛋白质水解率为 89.4%. 2-水解反应器容积负荷达到 36.2kg COD/(m3·d).提出了用酸化率和酸化速率作为水解酸化的综合评价指标.  相似文献   

4.
于宏兵  黄涛  林学钰  吴睿 《环境科学》2005,26(6):110-114
采用70℃高温水解酸化、高温厌氧、高温好氧、高温生物活性碳(BAC)组合工艺,对玉米深加工行业的高温工艺废水进行分相与分段处理研究,分别对COD、VFA、氨基酸等的去除处理效果进行研究和评价,在高温条件下完成高温高浓度有机废水的处理并达到回用热水、节能目的.结果表明:组合工艺系统对高浓度有机废水COD总去除率达到99.62%,VFA和氨基酸均为100%,出水COD<50mg/L,达到中水回用COD标准值,其中水解酸化相COD去除率占总去除率的49.7%,产甲烷相占33.7%,好氧段占14.5%,BAC段占1.1%;厌氧段占VFA总去除的56%,好氧段为21.2%,BAC段为21.8%;厌氧段占氨基酸总去除的34.8%,好氧段占62%,BAC段占3%.其中水解酸化有机负荷达到36.2kg/(m3·d).高温好氧和BAC组合工艺进水COD 3 500mg/L条件下,COD去除率仍能达到95.8%.整个系统运行平稳,抗冲负荷强,各段出水pH均在6.6~7.5之间波动.  相似文献   

5.
根据食品添加剂废水水质变化大,成分复杂特点,提出了"水解酸化—接触氧化—臭氧催化氧化—曝气生物滤池(BAF)"的组合工艺。废水COD从进水2000~7000mg/L降到100mg/L以下,最低为33mg/L,排放水质达到国家排放标准。水解酸化系统使废水平均COD从5290mg/L降到2323mg/L,并使大颗粒难降解分子部分转化为小颗粒可降解分子,为后续的接触氧化系统处理提供良好的条件,接触氧化出水平均COD为268mg/L。接触氧化出水含较多难生物降解有机物,经O3氧化预处理后在COD下降45%的情况下其BOD5/COD由0.3升为0.44,更易于生化降解。废水经曝气生物滤池平均出水COD为66mg/L。中试研究表明,水解酸化系统和臭氧催化氧化(负载MnO2的陶粒为催化剂)-曝气生物滤池深度处理系统是该工艺处理高浓度废水稳定达标的关键。  相似文献   

6.
同步脱氮好氧颗粒污泥的特性及其反应过程   总被引:32,自引:4,他引:28  
厌氧颗粒污泥经过驯化后,成为具有同步硝化与反硝化(SND)功能的好氧颗粒污泥.实验在2L反应器中进行,温度,pH值,溶解氧分别控制在25℃,pH7~8,3~4mg/L.在实验条件下,SND好氧颗粒污泥COD去除率90%,氨氮去除率100%,出水检测不出NO2--N和NO3--N.反应器中SND颗粒污泥粒径在2.0~2.7mm的占全部颗粒污泥的50%,SVI为15~30mL/gTSS;污泥所能承受的最大压力为23.236N;SND好氧颗粒污泥中挥发性固体为9.92mg/mL,占总固体的2/3.采用SND好氧颗粒污泥进行脱氮研究,反应6h后氨氮去除率达100%,废水中检测不到NO2--N,仅残留2mg/L的NO3--N.  相似文献   

7.
林可霉素生产废水的厌氧生物处理工艺   总被引:17,自引:2,他引:15  
采用单相中温升流式厌氧污泥床(UASB)反应器厌氧生物工艺处理含有有毒难降解有机物的林可霉素生产废水.当进水COD 8000~14000 mg/L,HRT约10h时,COD容积负荷可达20~35kg/(m3·d),COD去除率为50%~55%.适时调整并维持较高的表面水力负荷[0.2~0.4 m3/(m2·h)]、较高的进水有机基质浓度(COD为2000~3000mg/L)和污泥COD负荷[0.2~0.5 kg/(kg·d)],并适当延长启动驯化时间可培养出沉降性好、污泥活性较高的颗粒污泥.废水厌氧生物降解动力学符合Monod方程,动力学常数Vmax=1.3 d-1,Ks=8133mg/L.废水中不可生物降解物质占总COD的比例约为30%,这是废水COD去除率偏低的重要因素.  相似文献   

8.
水解酸化-SBR工艺处理印染废水的研究   总被引:16,自引:0,他引:16  
用水解酸化-SBR工艺处理印染废水的实验结果表明,出水COD平均为102mg/L,COD去除率平均为89.9%,色度去除率平均为70%.在实际工程中应用水解酸化(A)-好氧(O)-SBR工艺处理印染废水,出水COD平均为67mg/L,COD去除率平均为81.5%,色度去除率平均为66.7%.表明以水解酸化为预处理手段可有效提高印染废水的可生化性,提高整个工艺的COD去除率.  相似文献   

9.
以印染废水为处理对象,研究了水解酸化反应器启动过程中CODcr的去除率、出水B/C、pH值和反应器内VFA的变化。试验结果表明:反应器整个启动过程耗时35天,在废水量100%,CODcr去除率稳定在42.54~48.7%之间;出水B/C在0.428 3~0.463 3之间,比进水B/C提高了0.190 4~0.281 8;出水pH值保持在6.03~6.46之间,比进水pH值降低0.45左右;反应器内的VFA浓度达到140 mmol/L左右。启动过程表明:如果CODcr的去除率达到35%以上、出水B/C提高到0.35以上、出水pH值有明显降低、反应器内的VFA浓度达到100 mmol/L以上,则说明厌氧生物膜驯化成熟,水解酸化菌已经成为反应器内的优势菌种,反应器启动成功。  相似文献   

10.
水解酸化-好氧法处理油田废水机理研究   总被引:4,自引:0,他引:4  
闻岳  黄翔峰  裘湛  王峰  章非娟  周琪 《环境科学》2006,27(7):1362-1368
采用水解酸化-好氧法对经物化预处理的油田废水进行试验研究.当进水COD为190~220 mg·L-1时,水解酸化段和好氧段停留时间均为10h的条件下,出水COD为65~75 mg·L-1,达到GB3550-83第一级Ⅰ类标准.运用GC/MS技术分析油田废水有机污染物在工艺流程中相对组分变化的规律,揭示了水解酸化-好氧法处理油田废水过程中的污染物迁移和降解规律.并运用PCR-DGGE技术,考察不同生物反应器内微生物种群及其分布特征,初步确定水解酸化和好氧反应器内的优势菌种.  相似文献   

11.
试验采用预处理+水解酸化+SBR+活性炭吸附组合工艺处理化工废水,利用废H2SO4和废铁炭微电解,并以微电解-混凝沉淀+活性污泥为预处理,预处理控制工艺条件,S2-、色度、COD平均去除率分别为99.0%,98.9%,66.9%;试验的pH,VFA数据验证了水解酸化的稳定效果,稳定运行后,COD总去除率达96.0%,SBR出水经粉末活性炭吸附后COD出水300mg/L左右,达到三级排放标准(GB8978-1996)。  相似文献   

12.
欧阳二明  王伟 《环境科学》2010,31(10):2405-2410
采用高温ASBR处理水热改性污泥.结果表明,高温ASBR处理水热改性污泥的有机负荷(COD)由7.762kg/(m3·d)提升到13.106kg/(m3·d)后,会导致反应器内VFA的积累,pH和产气量的下降,反应器出现"酸化"现象.这种酸化现象属可恢复性酸化.系统恢复后,ASBR的有机负荷(COD)能达到10kg/(m3·d).高温ASBR在有机负荷(COD)为2.523、4.196、7.762、10.091kg/(m3·d)时的产气率(CH4/COD投入)分别为250、247、219、187mL.高温ASBR的有机负荷OLR与产甲烷速率MPR和COD产气率之间都呈现良好的线性关系,随着OLR的增加,产甲烷速率增大,COD产气率减少.  相似文献   

13.
关于ABR系统中酸解过程的特征及其恢复调控问题   总被引:14,自引:0,他引:14  
阐述了ABR系统中酸解过程的特征及调控措施 .在酸化初期 ,各隔室pH逐级升高 ,COD和VFA逐隔室降低 ,具有明显的两段厌氧消化的特点 .完全酸化期 ,各隔室pH降到 3 5— 4 5范围后就保持相对稳定 ,各隔室出水COD与进水COD接近 .酸化过程中污泥浓度逐渐降低 ,SVI增大 ,粘度增加 ,容易上浮 ;VFA累积 ,VFA中甲酸、丙酸、丁酸浓度升高 ,随时间延长 ,并无自然恢复迹象 .采用单独调控碱度或降低负荷的方式 ,系统都难以恢复正常 ,只有采用在碱度和负荷同时调控时 ,约 6 0d后系统恢复正常 .  相似文献   

14.
pH6.0酸性条件下产甲烷EGSB反应器的运行研究   总被引:4,自引:1,他引:3  
采用中性颗粒污泥接种,运行一个3.1L的EGSB反应器共345d,通过逐步降低pH值,获得了耐酸的产甲烷颗粒污泥并实现厌氧反应器在低pH、低碱度条件下的稳定运行.在pH 6.0,进水COD 3000mg/L,COD容积负荷5kg/(m3·d)时,反应器的COD平均去除率为95.0%,出水总碱度(以CaCO3计)仅为328.5mg/L,每g去除COD的沼气产量为372.2mL,沼气中甲烷含量约为57.6%;在进水COD 4 000mg/L,COD容积负荷7.5kg/(m3·d)时,COD平均去除率为90.9%,出水总碱度仅为404.8mg/L,每g去除COD的沼气产量为446.3mL,甲烷含量约为55.9%.EGSB反应器在pH6.0~6.1的范围内共运行112d,表明在低pH、低碱度下实现稳定的产甲烷过程是可行的.  相似文献   

15.
分析现有中药废水处理工艺及废水特点,并考虑到废水处理技术改造的要求,采用水解酸化-SBR-BAF法联合处理该中药废水,研究了SBR反应器的曝气时间、温度及原水pH值对系统处理效果的影响。系统进水ρ(COD)为1 249.4~1 444.5 mg/L、ρ(BOD5)为201.2~292.8 mg/L、ρ(SS)为208.7~310.6 mg/L、色度为70~100倍,曝气时间为14 h、温度为20℃、pH值为7时,出水ρ(COD)为123.4~140.8 mg/L、ρ(BOD5)为19.4~26.1 mg/L、ρ(SS)为32.7~60.4 mg/L、色度为36~50倍,COD、BOD5、SS的平均去除率分别达到90.3%、90.7%、81.8%,表明HAT-SBR-BAF法处理该中药废水是可行的。  相似文献   

16.
常温下内循环厌氧反应器的启动研究   总被引:1,自引:0,他引:1  
宋倩  马邕文 《环境工程》2010,28(1):14-16
研究了内循环厌氧反应器(IC反应器)在常温下处理葡萄糖配水的启动特性。结果表明:在运行温度为25~35℃的条件下,反应器经70 d启动完成,且IC反应器具有较好的处理效果,反应器内能形成大量的颗粒污泥。启动完成后,进水COD浓度在3 000 mg/L左右时,COD去除率一直保持在95%以上,出水COD浓度维持在200 mg/L左右。当HRT为5.8 h,容积负荷为11.9 kg/(m3.d)时,出水VFA低于200 mg/L,产气量为33 L/d,反应器运行正常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号