首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
冯驰  金琦  王艳楠  赵丽娜  吕恒  李云梅 《环境科学》2015,36(5):1557-1564
叶绿素a作为水质参数之一,常用来作为衡量水体富营养化程度的指示标准.利用从太湖及洞庭湖获取的326个实测数据,基于实测遥感反射率对水体光谱进行光学分类,结果表明所采集的样点可分为3种水体类型.结合GOCI的波段设置,建立了不同类型水体的叶绿素a浓度反演模型.水体类型一可以利用490 nm(3波段)和555 nm(4波段)来反演,水体类型二可利用660 nm(5波段)和443 nm(2波段),水体类型三利用745 nm(7波段)和680 nm(6波段).精度分析表明,分类后的平均相对误差明显下降,类型一为38.91%、类型二为24.19%、类型三为22.90%;类型一均方根误差为4.87μg·L-1、类型二为8.13μg·L-1、类型三为11.66μg·L-1;分类前后的总体平均相对误差由49.78%降低到29.59%,总体均方根误差由14.10μg·L-1降低到9.29μg·L-1,分类后反演精度得到了显著提高.利用2013年5月13日8景GOCI影像反演了太湖的叶绿素a浓度,结果表明,2013年5月13日太湖叶绿素a浓度日变化显著,高值区主要集中在竺山湾、梅梁湾、贡湖湾,低值区主要集中在湖心区以及南部区域,10:00以后太湖西南部沿岸的叶绿素a浓度显著降低.这种先分类后反演的方法对于二类水体的模型反演精度的提高具有重要作用.  相似文献   

2.
基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演   总被引:7,自引:0,他引:7       下载免费PDF全文
叶绿素a浓度是可直接遥感反演的重要水质参数之一,常用来评价湖泊水体的富营养化程度.太湖是典型的二类水体,光学性质复杂,应用一类水体线性反演模式拟合较为片面且难以找到最佳拟合模型.BP神经网络模型具有模拟复杂非线性问题的功能.为研究高分一号卫星16m多光谱相机WFV4结合BP神经网络进行太湖叶绿素a浓度监测的可行性,实验利用GF-1 WFV4影像和实时的地面采样数据,建立了BP神经网络模型,同时采用波段比值经验模型进行对比.经精度检验,BP神经网络模型预测值与实测值之间的可决系数R2高达0.9680,而波段比值模型的R2为0.9541,且均方根误差RMSE由波段比值模型的18.7915降低为BP神经网络模型的7.6068,平均相对误差e也由波段比值模型的19.16%降低为BP神经网络模型的6.75%.结果证明,GF-1 WFV4影像应用BP神经网络模型反演太湖叶绿素a浓度较波段比值模型精度有所提高.将经过水体掩膜的GF-1 WFV4影像用于训练好的BP神经网络反演太湖叶绿素a浓度分布,结果显示,叶绿素a高浓度区集中分布在湖心区北部、竺山湾、梅梁湾区域,与之前的研究一致.本文研究结果验证了采用BP神经网络模型对GF-1 WFV4影像进行太湖叶绿素a浓度反演的可行性.  相似文献   

3.
利用高光谱反演模型评估太湖水体叶绿素a浓度分布   总被引:3,自引:1,他引:2       下载免费PDF全文
叶绿素a浓度是评价水体富营养化和初级生产力的一个重要参数,高光谱遥感是获取叶绿素a浓度的有效手段.为建立太湖水域叶绿素a的最佳高光谱估算模型,选取2015年5—7月共计60组同步实测高光谱数据和叶绿素a浓度数据,在地面光谱反射率和叶绿素a浓度相关性分析的基础上,使用2∶1的数据样本进行太湖水域叶绿素a的最佳高光谱估算模型的建立和验证,筛选模型分别为波段比值、三波段、荧光峰位置、峰谷距离、一阶微分、NDCI(Normalized Difference Chlorophyll Index)、峰面积、荧光峰高度、WCI(Water Chlorophyll-a Index)和四波段模型.结果表明,建模得到的四波段模型决定系数最高,峰面积模型的决定系数相对最低;四波段模型的反演精度最高,均方根误差(RMSE)为0.00376 mg·L~(-1),平均绝对误差(MAPE)为27.86%,而WCI模型的反演精度相对最低,RMSE为0.01231 mg·L~(-1),MAPE为45.11%.将反演精度最高的四波段模型应用于2015年8月3日的两景HSI(Hyperspectral Imaging Radiometer)高光谱影像数据,也得到较高精度,利用同步实测叶绿素a浓度验证的决定系数为0.7643,RMSE为0.00433 mg·L~(-1),MAPE为45.62%.在春、夏季叶绿素对水体光学特性占主导作用且叶绿素分布均匀的情景下,本研究可为太湖水域叶绿素a的高光谱反演和水环境监测提供有价值的参考,其它季节水体光谱特点的研究尚待进一步开展.  相似文献   

4.
基于数据同化的太湖叶绿素多模型协同反演   总被引:2,自引:1,他引:1  
李渊  李云梅  吕恒  朱利  吴传庆  杜成功  王帅 《环境科学》2014,35(9):3389-3396
在国内外众多学者的不懈努力下,开发了大量的水质参数遥感估算反演模型,但不同的模型都具有其"局限性",只能从某个层面反映"真值".基于上述考虑,本研究发展了基于数据同化方法的太湖叶绿素a浓度多模型协同反演算法.利用2006~2009年太湖野外实测水体高光谱遥感反射率数据,构建了7个叶绿素a浓度反演模型;通过模型精度对比,最终遴选出6个适宜的叶绿素a浓度反演模型.进而使用不同模型组合,进行多模型协同反演.结果表明:1多模型协同反演算法的反演精度要高于单模型反演的反演精度,最优MAPE仅为22.4%;2随着参与多模型协同反演的模型个数的增加,其反演精度也逐渐提高,MAPE均值从25.6%降低到23.4%,RMSE均值从15.082μg·L-1降低到14.575μg·L-1,相关系数R均值从0.91提升到0.92;3通过对多模型协同反演产品的置信区间进行计算,可以有效地估算产品精度和误差,同时使得获取全湖反演叶绿素a浓度的误差空间分布情况成为可能.  相似文献   

5.
以2009~2019年HJ-1A/B卫星多光谱数据和对应日期的实测数据为数据源,通过预处理提取出各波段组合反射率并与实测叶绿素a浓度数据进行统计相关性分析,选取相关性最高的波段组合作为特征变量与2/3的实测叶绿素a浓度数据进行建模,并用剩下的1/3实测叶绿素a浓度数据进行精度验证以确定最佳遥感反演模型,最后根据最佳反演模型对2009-2019年的香港近海海域叶绿素a浓度进行反演,明晰该海域近10年的叶绿素a浓度时空变化特征.结果表明:利用HJ-1A/B卫星多光谱数据反演香港近海海域叶绿素a浓度的最佳波段组合为第3波段和第2波段比值(B3/B2),相关系数(r)为0.893;最佳反演模型为利用B3/B2构建的e指数回归模型(Chl=0.004e6.693(B3/B2)),决定系数(R2)为0.934,均方根误差(RMSE)为0.255μg/L,平均相对误差(RPD)为25%;近10年香港近海海域的叶绿素a浓度时空变化特征:空间上整体呈现“东高西低,由东向西逐渐减小”的分布特征,西部海域比东部海域平均浓度低5μg/L左右;2017年内呈“春低秋高,夏升冬降”的随季节变化特点,其中秋季最高,夏春两季次之,冬季最低.  相似文献   

6.
广州流溪河水库叶绿素a遥感反演研究   总被引:1,自引:0,他引:1  
叶绿素a是衡量水体初级生产力和富营养化程度的一项重要指标。本研究在讨论分析反演水体叶绿素a浓度的半分析生物光学模型理论基础上,利用Landsat TM数据及中巴资源卫星02星CCD相机高分辨率数据,结合实测数据建立广州流溪河水库叶绿素a浓度的波段比值型反演模型。该模型对两个不同监测日期的叶绿素a浓度反演效果较好,拟合系数(R2)分别达到0.860和0.715,均方根误差分别为0.102μg/L和0.198μg/L。反演结果表明,流溪河水库叶绿素a浓度整体较低,均在2.0μg/L以下,空间分布在湖库区较均匀,入库支流玉溪河水域叶绿素a浓度略高于湖库区。  相似文献   

7.
太湖水域叶绿素a浓度的遥感反演研究   总被引:5,自引:0,他引:5  
利用太湖水域MODIS遥感数据的各波段反射率组合计算值,与实测的叶绿素a浓度进行相关性分析,找到相关性最好的反射率组合,建立反演太湖叶绿素a浓度的遥感模型.结果表明,利用MODIS数据可以较好地实现对太湖水域叶绿素a浓度的定量反演计算,并以MODIS数据第3、第17波段的反射率组合作为遥感指数建立了反演叶绿素a浓度的模型.第3、第17波段的波长范围分别为459nm~479nm、890nm~920nm,这一波段选择与以往使用TM数据得到的结论有所不同.  相似文献   

8.
杨婷  张慧  王桥  赵巧华 《环境科学》2011,32(11):3207-3214
通过对2010年5月2日太湖HJ-1A卫星超光谱影像的几何纠正和6S模型辐射校正,以及水体实测光谱数据和影像光谱数据分析,将太湖28个水体采样点光谱数据分别进行归一化处理和一阶微分处理后,选取和水质参数相关系数最大的波段或波段组合建立反演模型,获得太湖叶绿素a浓度以及悬浮物浓度的空间分布图.研究表明,超光谱影像B73波...  相似文献   

9.
基于环境一号卫星的太湖叶绿素a浓度提取   总被引:4,自引:1,他引:3       下载免费PDF全文
综合环境一号小卫星的CCD数据和同步地面水质监测数据,发现可见光红波段与近红外波段的波段组合与叶绿素a实测浓度存在较高相关性,并以此为基础建立了3个提取水体表层叶绿素a浓度的遥感信息模型.经验证分析,基于近红外波段与红波段比值的模型用于叶绿素a浓度反演提取的精度良好,RMSE达到了6.04mg/m3.将该模型应用于环境一号卫星CCD数据,生成了2009年5~12月共8幅太湖水体叶绿素a浓度分布图,并对其进行了时空分析,结果符合实际,并与以往的研究结果相一致.但模型不适用于水生植被覆盖较多区域叶绿素a浓度估算.  相似文献   

10.
太湖叶绿素a浓度时空分异及其定量反演   总被引:8,自引:2,他引:6  
利用2005年实测叶绿素a浓度数据分析了太湖叶绿素a浓度的时空分布特征,并利用同步光谱数据,分季节对太湖叶绿素a浓度的反演模型进行研究,从而分析叶绿素a的时空变化对反演模型的影响.首先分析1a内叶绿素a浓度随时间的变化规律,然后利用反距离加权插值法绘制叶绿素a浓度不同季节空间分布图,分析叶绿素a浓度在不同季节的空间分布规律,在此基础上分春、夏、秋3个季节和中营养化、轻度富营养化、中度富营养化、重度富营养化4个营养状态进行叶绿素a浓度定量反演模型研究.结果表明,太湖叶绿素a浓度具有明显的时空分布特征.夏季叶绿素a浓度最高,冬季最低,平均浓度分别为56.29μg/L、13.61 μg/L.秋季由于受到夏季高浓度的影响,叶绿素a浓度高于春季,平均值分别为26.43μg/L、34.78μg/L;夏季叶绿素a浓度空间变化最大,冬季全湖叶绿素a浓度含量较为均一,空间变化不明显,秋季空间差异要大于春季;全年北部湖区的空间差异较大,而南部湖区相对较小.不同季节叶绿素a反演算法模型不同,春、秋季波段比值法反演效果较好;而夏季微分法反演效果明显好于其它反演算法,不同营养状态条件下反演算法差异相对较小.  相似文献   

11.
郝晨林  邓义祥  富国  乔飞 《环境科学研究》2020,33(11):2467-2473
环境背景条件变化会导致湖泊ρ(Chla)与环境因子响应关系发生变化.采用低通时序滤波轨线方法可以方便地识别ρ(Chla)与环境因子响应关系的时间转折点,将长时间序列数据进行分段,从而建立分段回归函数,为研究环境因子与湖泊ρ(Chla)的因果关系提供了一种新的思路.以太湖为研究对象,采用低通时序滤波轨线方法,评估了2001—2018年太湖的ρ(Chla)与营养盐〔ρ(TN)、ρ(TP)〕以及氮磷比〔ρ(TN)/ρ(TP)〕的变化过程,研究了年均气温、滞留时间对产藻效率〔ρ(Chla)/ρ(TP)〕的影响过程.结果表明:①2006年、2011年为太湖营养过程轨线的两个时间转折点,将太湖的营养过程轨线分为3段.第1段为污染阶段(2001—2006年),太湖的ρ(TN)、ρ(TP)、ρ(Chla)同步升高,于2006年达到第一个峰值;第2段为修复阶段(2006—2011年),太湖的ρ(TN)、ρ(TP)、ρ(Chla)同步降低,于2011年达到谷值;第3段为富营养化加剧阶段(2011—2018年),太湖的ρ(TN)呈下降趋势,ρ(TP)与ρ(Chla)同步升高,至今未出现转折点.②太湖藻类生长的限值因子为ρ(TP),2011年之后氮磷比进入浮游藻类适宜生长区,为蓝藻暴发提供了条件.③2011—2018年产藻效率增长了51%,且目前仍在升高未出现转折点,气温升高可能是主要原因.④依据2011—2018年的滤波值建立ρ(Chla)-ρ(TP)的函数预测,为控制蓝藻暴发〔ρ(Chla) < 10 mg/m3〕,太湖的ρ(TP)需要控制在52 μg/L以下.⑤2006年后,太湖的滞留时间呈现缩短趋势,对藻类的繁殖形成抑制,但滞留时间不是影响产藻效率的关键因子.研究显示:自2006年太湖流域实施一系列生态修复工程后,湖泊氮浓度明显降低,但由于流域氮磷排放量较大而且湖体沉积物中累积磷含量较高,致使水体营养盐水平仍未降到能显著抑制蓝藻生长的水平;目前气温升高趋势仍在持续,太湖的控藻形势严峻,为摆脱气候变暖对蓝藻水华趋势的决定作用,应当在控氮基础上加大控磷的力度,同时更多考虑水文调节、生物修复、加强打捞等措施.   相似文献   

12.
太湖水体中悬浮颗粒物的比吸收光谱特性及其参数化分析   总被引:13,自引:0,他引:13  
通过对太湖水体的野外采样,利用定量滤膜技术测量了水体中浮游植物色素的吸收系数(aph(λ))和非色素颗粒物的吸收系数(aNAP(λ)),进而推算比吸收系数.同时,对浮游植物色素和非色素颗粒物的比吸收系数的时空变化特征进行了分析.结果表明,浮游植物色素的比吸收系数(ap*h)在蓝光440nm的变化范围为0.008~0.268m2·mg-1,在红光670nm的变化范围为0.004~0.098m·2mg-1;;通过K-Mean算法将浮游植物色素的比吸收光谱分成3种具有不同光谱特征的类型,类别1、2和3占总数的百分比分别为61.0%、12.2%和26.8%,表明太湖水体中浮游植物色素的比吸收光谱是以类别1为主;;色素包裹效应因子Qa*(675)在Chla浓度<50mg·m-3时,随Chla浓度的增大迅速减小,而在Chla浓度>50mg·m-3时,其减小的趋势趋于缓慢,Qa*(675)与Chla浓度呈现出较好的幂函数关系.非色素颗粒物的比吸收系数(aN*AP)在蓝光440nm处的变化范围为0.012×10-3~0.143×10-3m2·mg-1,利用此处的比吸收系数建立的非色素颗粒物比吸收光谱的参数化模型,光谱曲线斜率...  相似文献   

13.
我国东部浅水湖泊水生态效应特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为探究我国东部浅水湖泊生态系统的时空异质性及其演替的响应指标,基于东部浅水湖泊长时间序列(1986-2014年)的监测数据,分析了不同湖泊类型的水质和浮游植物群落分布特征,并综合运用稳态转换理论和典范对应分析方法(CCA),研究了富营养化湖泊浮游植物群落的演替特征以及响应因子.结果表明:①从水系上看,太湖水系湖泊的水质最差,ρ(TP)、ρ(TN)和ρ(Chla)最高,分别为(0.276±0.606)(3.563±1.430)mg/L和(14.801±10.117)μg/L,SD(透明度)为(0.486±0.272)m;从水文连通性上看,湖泊的水质为通江湖泊>非通江湖泊>阻隔湖泊.②空间分布上,湖口以下干流浮游植物密度最高,为2.674×107 L-1.蓝藻门为东部浅水湖泊的优势种群,密度最高达1.897×107 L-1,绿藻门和硅藻门次之,黄藻门最少,仅为3.951×103 L-1.③东部浅水湖泊生态系统演替发生在ρ(Chla)为5.21~10.57 μg/L阈值范围内.④以东部典型湖泊-太湖为例,浮游植物群落分别在1997-1998年和2000-2001年两个时间梯度达到最大值.EC(电导率)和ρ(TN)是影响太湖浮游植物群落分布的显著因子.研究显示,随着东部浅水湖泊水质恶化,浮游植物群落结构特征发生突变,导致其生态系统发生演替,预防东部浅水湖泊生态系统演变应严控EC和ρ(TN).   相似文献   

14.
太湖微囊藻毒素的时空分布特征   总被引:1,自引:0,他引:1  
微囊藻毒素对水体危害严重,为了探究太湖中微囊藻毒素的变化规律及其主要环境影响因子,对太湖34个采样点进行了为期1 a(2011年11月—2012年10月)的监测与采样,分析了水体中ρ(MCs)(MCs为微囊藻毒素)〔包括ρ(TMC)(TMC为总藻毒素)、ρ(EMC)(EMC为胞外藻毒素)和ρ(IMC)(IMC为胞内藻毒素)〕,以及ρ(Chla)、蓝藻生物量、ρ(TN)、ρ(TP)、N/P〔ρ(TN)/ρ(TP)〕、pH、温度、透明度、电导率、ρ(DO)等水环境因子的变化特征,讨论了ρ(MCs)与各水环境因子之间的相关性. 结果表明:ρ(MCs)在太湖中呈现一定的规律性,在7—8月蓝藻爆发期,ρ(MCs)低于0.10 μg/L,之后逐渐升高,9月达到最高值(0.28 μg/L). 受地理位置和沉积环境等影响,太湖西北区MCs污染最严重,ρ(MCs)最大值为0.30 μg/L. 相关性分析结果表明,ρ(MCs)与ρ(Chla)、ρ(TN)、ρ(TP)、N/P显著相关,其中,ρ(MCs)与ρ(Chla)呈极显著正相关(P<0.01);ρ(IMC)和ρ(TMC)均与蓝藻生物量呈显著正相关(P<0.05),而ρ(EMC)与蓝藻生物量相关性不显著;ρ(IMC)和ρ(TMC)均与ρ(TN)呈极显著负相关(P<0.01),而ρ(EMC)与ρ(TN)呈显著负相关(P<0.05);ρ(MCs)与ρ(TP)呈显著正相关,而与N/P呈显著负相关(P<0.05).   相似文献   

15.
王峰  王世新  周艺  阎福礼 《环境科学学报》2009,29(11):2259-2266
基于Ⅱ类水体短波红外(Short-Wave Infrared,SWIR)波段离水反射率为0的假设,提出一种反演Ⅱ类水体上空气溶胶参数的算法(CaseⅡWater Algorithm, C2W),并与AERONET(Aerosol Robotic Network)太湖站实测数据进行了比较分析.结果表明,反演得到的0.670μm与0.870μm两个波段的气溶胶光学厚度(Aerosol Optical Depth, AOD)与实测值呈现明显的线性关系(R2=0.974、0.971),在气溶胶光学厚度τ>0.2时不确定性在Δτ=±0.03±0.05τ范围内.11期气溶胶有效半径(Aerosol Effective Radius,AER)数据中,9期的不确定性在±25%范围内,另外两期数据的不确定性在±30%以内.反演精度符合MODIS气溶胶产品的精度要求.  相似文献   

16.
利用CDOM吸收系数估算太湖水体表层DOC浓度   总被引:14,自引:6,他引:8  
姜广甲  马荣华  段洪涛 《环境科学》2012,33(7):2235-2243
溶解有机碳(DOC)是水体中最大的有机碳库,在水体碳循环中起着重要作用.有色溶解有机物(CDOM)是DOC的重要组成部分,其吸光作用改变着水下光场结构,是水色遥感监测的重要因子之一,建立两者的联系为利用遥感技术估算湖泊水体表层DOC浓度提供有效的技术方法.基于2010年5月、2011年1月、2011年3月和2011年5月的太湖4期实验数据(183个采样点),利用CDOM特征波长吸收系数[ag(250)和ag(365)]建立多元线性模型估算太湖水体DOC浓度,同时利用2011年8月29日~9月2日的数据(n=27)对模型进行验证评价,并构建了湖泊水体DOC浓度的遥感反演模式.结果表明,该模型能够有效估算太湖水体的DOC浓度;2011年1月DOC和CDOM的源和汇有较大差异,估算效果较差;其他3期数据的模型估算效果显著(R2=0.64,RMSE=14.31%,n=164),并在201108期数据中得到了验证(R2=0.67,RMSE=10.58%,n=27).模型形式虽具有一定的通用性,但系数在不同的水域中有所差异,模型系数的区域化成为下一步研究的重点.  相似文献   

17.
刘忠华  李云梅  檀静  郭宇龙  周莉  刘阁 《环境科学》2012,33(9):3000-3008
总悬浮物浓度是水体重要的水质参数.本研究利用太湖春季、秋季和巢湖夏季多期野外实测数据,通过对生物光学模型进行合理的简化构建适用于太湖、巢湖水体总悬浮物浓度反演的半分析模型,并将该模型应用于MERIS和环境一号卫星高光谱卫星影像上以验证该方法的适用性.结果表明:①针对太湖和巢湖水体,总悬浮物浓度最优反演波段范围为730~832nm(氧气吸收带除外);②针对MERIS数据,波段10(中心波长754 nm)和波段12(中心波长779 nm)均适用于太湖总悬浮物浓度反演,而波段11(中心波长761 nm)由于氧气吸收带的影响不适用于总悬浮物浓度反演;③针对太湖MERIS数据,模型反演结果的相对误差基本上呈现出随距离卫星过境时间增大而逐渐增加的趋势,在卫星过境时间正负3 h内测量的样点,模型反演结果的相对误差均在50%以内,而时间差超过3 h,相对误差则逐渐增大到50%以上;④环境一号卫星高光谱数据17个波段(B83~B99)均能够对巢湖总悬浮物浓度进行较好的反演,其反演效果要好于MERIS数据在太湖的反演结果.  相似文献   

18.
多环芳烃在西江高要段水体中的分布与分配   总被引:5,自引:2,他引:3  
邓红梅  陈永亨  常向阳 《环境科学》2009,30(11):3276-3282
为了解西江流域水体中多环芳烃(PAHs)的深度和季节分布及其在溶解相和颗粒相的分配以及控制因素,分别在洪水期(2003年8月和2004年7月)和枯水期(2003年11月和2004年3月)采集了西江高要段水柱.结果表明,溶解相和颗粒相中PAHs的浓度分别为21.7~138 ng/L和40.9~664.8μg/kg;水体中PAHs的总含量(颗粒相及溶解相),洪水期大于枯水期.在溶解相中,PAHs的浓度随深度无明显规律;而在颗粒物中,PAHs的浓度都表现出相同的变化趋势,即中层水PAHs含量最高,表层水PAHs含量最低.溶解相和颗粒相中PAHs的浓度都随悬浮颗粒物的含量增加而增加.从PAHs组成特点来看,溶解相以3环的PAHs为主,而颗粒相以3~4环的PAHs为主.PAHs在颗粒相及溶解相中的分配系数(KP)不受颗粒有机碳浓度控制(R2为0.000 1~0.2),而受颗粒物浓度、及溶解有机碳浓度的共同影响(R2为0.15~0.36),尤其是溶解态的细小碳黑有机质的影响.西江高要段水体PAHs在不同季节的lgKOC值大部分超过经典平衡分配模型的上限.除了2003年11月(R2为0.000 4~0.12,p0.001)之外,其它3个季节PAHs的lgKOC与lgKOW均有较强的相关性(R2为0.29~0.91,p0.05).洪水期颗粒物的亲脂性强于枯水期.  相似文献   

19.
水温和营养盐增加对太湖冬、春季节藻类生长的影响   总被引:2,自引:1,他引:1  
为探讨水温和营养盐增加对冬、春季节太湖藻类生长和群落演替的影响,研究了不同水温(不增温、12.0、14.0、16.0、18.0、20.0℃)和不同营养盐浓度(低、中、高营养盐浓度)下藻类的生长及优势种群变化. 结果表明:藻类∑ρ(Chla)〔蓝藻、绿藻及硅藻中ρ(Chla)总量,下同〕随着水温的升高呈增加趋势,在20.0℃下∑ρ(Chla)为0.19~12.94μg/L,显著高于其他水温试验组(0.01~6.83μg/L);与较低水温(不增温、12.0、14.0℃)相比,较高水温(16.0、18.0、20.0℃)更能显著促进藻类对氮、磷营养盐的吸收利用. 添加营养盐后,硅藻、绿藻ρ(Chla)的日均值分别为0.52~4.07、0.17~0.52μg/L;湖水中∑ρ(Chla)呈增长趋势,并且浮游植物群落结构的优势种由绿藻转变为硅藻,硅藻ρ(Chla)所占比例从试验初始的50%升至75%~98%, 说明营养盐增加可加大硅藻的竞争优势;而绿藻的生长则可能同时受水温和营养盐共同作用的影响,因此太湖冬、春季节藻类的演替同时受到水温和营养盐的影响.   相似文献   

20.
基于实测光谱与MODIS数据的太湖悬浮物定量估测   总被引:11,自引:2,他引:11  
以太湖为研究区域,对太湖水体的水面反射光谱进行实地测试,并取样在实验室进行水质分析;根据光谱分析得到的悬浮物特征波段,估测悬浮物浓度;最后,对比MODIS波段,用最敏感波段及主成分分析法建立悬浮物估测模型.结果表明,576nm附近的反射率峰值、841nm处反射率一阶微分值和808nm附近的反射峰高与悬浮物浓度都有较好的相关性,其中峰高法和一阶微分法对悬浮物浓度的估测精度相当;MODIS波段1与悬浮物浓度相关性最好,经过主成分变化后的第一主成分和第二主成分可以较好地估测悬浮物浓度.因此,可利用MODIS数据对太湖悬浮物进行长期动态监测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号