首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
BP网络模型在朝阳地区大气污染预报中的应用   总被引:1,自引:0,他引:1  
厚春华 《环境保护科学》2007,33(5):53-54,67
目前,人工神经网络理论发展迅速,并在模式识别和系统辨识中得到广泛应用。而其中采用误差反向传播方法(Back Error Propagation)的BP网络模型是目前应用最为广泛的神经网络模型之一,它是一种简单而又非常有效的算法。本文应用人工神经网络方法,在模拟人脑的思维方式下,建立了大气污染物浓度的神经网络预报模型,并将计算结果与监测值进行了对比验证,计算结果表明,BP模型应用于大气污染物浓度预报具有较高的预报精度。  相似文献   

2.
人工神经网络法在大气污染预报中的应用   总被引:3,自引:0,他引:3  
以鞍山市为例,应用人工神经网络方法,模拟人脑的思维方式,建立了大气污染物浓度的神经网络预报模型,并将计算结果与监测值进行了对比验证,计算结果表明,BP模型应用于大气污染物浓度预报具有较高的预报精度。  相似文献   

3.
大气污染预测预报研究   总被引:1,自引:0,他引:1  
以排放到大气环境中的烟尘为例,进行大气污染预测预报,并利用保证率的概念表示预测的结果,为大气污染的预测预报工作提供了一种基本方法。  相似文献   

4.
运用BP和RBF人工神经元网络建立臭氧生物活性炭系统模型,考察了两个网络对水处理系统建模的适应性。研究表明,BP和RBF人工神经元网络的臭氧生物活性炭系统模型准确地描述了系统影响因素的关系,可以求出系统中臭氧的经济投量;用BP人工神经元网络建立水处理系统模型,泛化能力好,但逼近速度较慢;运用RBF人工神经元网络建模,泛化能力较差,但逼近速度快。该项研究克服了运用传统方法建模的不足,为实现水处理系统的优化设计提供了可行的途径。  相似文献   

5.
气象条件变化对呼市地区大气污染的影响   总被引:3,自引:0,他引:3  
利用1995至2002年呼和浩特市区空气污染物PM10、TSP、NO2、NO2、SO2浓度的实际监测数据与同期的地面要素场资料、大气边界层气象参数和地面天气图分析了污染物浓度与气象条件的关系及气象条件变化对呼市地区污染物浓度变化的影响,讨论了污染物浓度变化规律的成因。在此基础上用逐步回归方法建立了不同季节呼市地区空气污染浓度统计预报模型。  相似文献   

6.
基于BP神经网络的污染物浓度多模式集成预报   总被引:1,自引:0,他引:1  
基于中国气象局雾-霾数值预报系统CUACE、北京区域环境气象数值预报系统BREMPS和华东区域大气环境数值预报系统WRF-Chem三个环境气象模式预报产品,利用BP神经网络方法建立多模式集成预报模型.首先通过实验得到BP神经网络的训练函数、隐含层节点数和训练样本长度分别为贝叶斯归一化训练函数trainbr、10和50.随后选取北京、天津和石家庄站点的预报结果检验该模型的预报性能.结果表明:(1)相对于单模式,BP神经网络集成预报的3~72h逐3h污染物浓度和观测之间的归一化平均偏差从-100%~200%降低到-20%~20%,污染物浓度和观测的均方根误差比各单模式降低15%以上,相关系数从0.1~0.8提升到0.3~0.85之间,说明其预报结果优于各单模式.(2)2016年AQI等级评估表明,集成模型预报的北京轻度和中度污染的TS评分分别比CUACE提高22%和10%,在天津重度污染的空报率和漏报率分别降低31%和25%.(3)2016年12月份的重污染过程评估发现,集成模型预报的PM2.5浓度的演变趋势和实况基本相符.  相似文献   

7.
采用全球多区域投入产出(MRIO)模型耦合二氧化硫(SO2)、氮氧化物(NOx)、可吸入颗粒物(PM10)、非甲烷挥发性颗粒物(NMVOC)排放清单,定量分析了2012年中国与其他国家贸易过程中隐含的大气污染排放转移.结果显示,中国是隐含SO2、NOx、PM10排放的输出地和隐含NMVOC排放的输入地.欧盟、东亚和美国购买我国商品(如电力燃气和水供应业、重工业和矿采选业)导致的出口隐含大气污染排放量占比约为70%.中国在消耗撒哈拉以南非洲地区、中东&北非、东亚、东南亚和欧盟进口商品过程中,导致上述地区排放NMVOC为3.1×106t,约占我国进口隐含NMVOC排放的69.2%.为了减轻我国对外贸易中承担的环境负担,本文从加强重污染产业管控、发展绿色经济、推进全球绿色供给链等方面提出相关政策建议.  相似文献   

8.
应用BP神经网络法建立京津冀及周边城市、汾渭平原、苏皖鲁豫交界地区和长三角地区等重点区域95个城市PM2.5预报模型,对2020年秋冬季上述地区城市开展未来7 d的PM2.5预测预报,并对比同期业务化运行的数值模型预报结果和各城市人工订正后预报结果,对3方法预报效果进行分析评估.结果表明:(1) 4区域神经网络法模型性能短期预报相对较好,中长期有所降低,对4区域均有一定的系统性高估,苏皖鲁豫交界地区系统性偏差最小,长三角地区偏差最显著.数值模型区域预报水平较神经网络有所降低,各评价指标总体低于神经网络,对辖区城市间预报效果较神经网络差异更大.(2)神经网络、数值模型和人工订正方法对4区域PM2.5浓度预报准确率普遍较低,平均不足50%,准确水平总体呈:神经网络>人工订正>数值模型. 3方法分指数级别范围准确率均大幅提升,4区域1~4 d平均准确率均在65%以上,神经网络模型和人工订正水平相近,总体高于数值模型.(3)在预报中度及以上污染级别日时,数值模型在京津冀及周边城市、苏皖鲁豫交界地区和长三角地区效果均较...  相似文献   

9.
大连市空气污染预测预报统计方法的研究   总被引:7,自引:0,他引:7  
通过分析大连市的大气污染因子与气象因子的关系 ,利用统计学中多元回归的方法 ,建立了大连空气污染预测预报方程。  相似文献   

10.
近地面层臭氧是光化学污染的主要污染物之一.臭氧污染不仅严重影响着空气质量并且危害人类健康与动、植物生长.本研究以徐州市为研究区,基于环境监测站连续监测数据分别采用分类回归树(CART)、随机森林(RF)和M5模型树方法建立臭氧浓度统计预报模型,选取1、4、7、10等4个月作为季度代表进行区域臭氧浓度预测的研究.以2015整年逐小时徐州市国控大气监测站实时监测的臭氧浓度(因变量)和气象因子数据(自变量)为训练样本建立臭氧浓度统计预报模型.模型验证结果表明,总体上3种决策树模型能够较好的预测臭氧浓度动态变化特征,月尺度上预测值与观测值相关系数均值为0.68,平均绝对误差和均方根误差均值分别为21.63μg·m~(-3)和27.42μg·m~(-3).在此基础上,基于站点观测所建立臭氧统计预报模型,以WRF模型模拟的气象场作为输入,预报区域网格化臭氧预报值,并发现臭氧浓度空间分布与站点观测特征总体一致性较好.经与观测值进行对比,结果表明两者相关系数均值为0.58,平均绝对误差及均方根误差分别为29.38μg·m~(-3)和37.15μg·m~(-3),预报准确率均高于75%.同时利用周步长观测值与预测值建立的多元线性集合预报回归方程对3种决策树模型的预报值进行修正,在一定程度上提高了预报值的精度.  相似文献   

11.
基于BP神经网络的空气污染指数预测模型研究   总被引:1,自引:0,他引:1  
BP神经网络已成为研究空气污染预测的有效工具之一。文章利用近十年北京市地面气象观测资料和空气污染指数数据,通过BP神经网络技术构建了不同季节的空气污染指数预测模型,对北京市空气污染指数进行了预测。通过相关系数分析法,对比分析了预测结果与实际监测结果,研究结果表明:春、夏、秋、冬季的预测值与监测值线性相关系数分别为0.81、0.84、0.89、0.85。北京春季常伴随有沙尘天气,而文章并没有考虑沙尘天气对预测模型的影响,因此春季BP神经网络预测精度在四季中最低,其预测值与监测值的线性相关系数为0.81。由于秋季不同空气质量级别的数据都有较多分布,因此该季节构建的网络更具有代表性,其预测精度在四季中最高,预测值与监测值的线性相关系数高达0.89。总之,BP神经网络模型对于北京空气污染指数预测是行之有效的。  相似文献   

12.
基于GA-ANN改进的空气质量预测模型   总被引:2,自引:0,他引:2       下载免费PDF全文
赵宏  刘爱霞  王恺  白志鹏 《环境科学研究》2009,22(11):1276-1281
基于人工神经网络的空气质量预测模型优于传统的逐步回归模型,但由于性能差异不明显而较少在空气质量预报中应用. 设计了将遗传算法和神经网络算法相结合的基于GA-ANN的空气质量预测模型,并利用天津市2003—2007年气象和污染物监测资料对该模型进行验证. 对2007年全年的ρ(SO2),ρ(NO2)和ρ(PM10)进行预测,预测值与实测值的相关系数分别为0.899 6,0.828 3和0.600 0. 与一般的人工神经网络预测模型相比较,GA-ANN模型将空气质量等级预报的准确率从77.57%提高到79.67%. GA-ANN模型可结合其他方法进行日常空气质量预报.   相似文献   

13.
基于气象相似准则的城市空气质量预报模型   总被引:1,自引:0,他引:1  
为提高城市空气质量预报准确率,文章在传统BP神经网络的基础上提出了基于气象相似准则的样本优化方法,建立了三层样本筛选优化机制,确定了阀值及权重矩阵,从而建立了城市空气质量动态预报模型。将模型应用在广州8个空气质量监测站点的预报上,并与传统的BP神经网络空气质量预报模型进行了对比分析,效果良好。分析结果表明,广州8个空气质量监测站点的SO2、NO2、PM10/2.5的实测值与预报值的平均绝对误差分别为0.016 mg/m3、0.014 mg/m3、0.020 mg/m3,级别预报准确性评分分别为89.6、92.6和84.6,预报准确度综合评分达81.6,并且比传统神经网络模型具有更高的预报精度。  相似文献   

14.
制备了一定含水率不同浓度的CuCl2的PVA样品,用微波矢量网络分析仪和微波传感器测量S11参数,计算得到相对复介电常数。以样品相对复介电常数的实部、虚部及对应频率作为输入,以CuCl2溶液的浓度作为输出,建立BP人工神经网络模型。用训练样本集对网络训练后,检验样本的预测结果与实际值最大误差为0.97%。结果表明,利用复介电常数和BP人工神经网络进行浓度预测是一种很好的方法,进而为环境监测提供了方法依据。  相似文献   

15.
鉴于BP网络在处理非线性复杂系统的优势,以武汉市为研究对象,构建一个10-4-1结构的BP神经网络预测模型,将1978-2002年和2003年的相关数据作为模型的训练和测试样本,以2004年的社会、经济、环境数据作为网络的预测输入,对该年的总生态足迹进行预测。结果表明,BP神经网络预测结果与实际足迹值的相对误差为0.69%,预测精度优于传统的多元回归统计模型。  相似文献   

16.
垃圾渗滤液生物处理系统BP人工神经网络模型   总被引:1,自引:1,他引:0  
垃圾渗滤液成分复杂,变化范围大.对其调试及长期持续良好运行存在较大困难。本文针对武汉市二妃山垃圾渗滤液的调试运行数据,利用人工神经网络原理,建立BP人工神经网络垃圾渗滤液生物处理模型来预测处理效果.确定最优反应条件。实验结果显示网络具有良好的收敛特性,模型具有工程实用价值。  相似文献   

17.
根据天津市2013年12月1日-2013年12月24日气象监测数据,先进行温度、湿度、风力因素对PM2.5浓度影响的相关性分析及定性分析,绘制温度、湿度和PM2.5浓度的二维趋势分布图及气体扩散风向浓度分布图;再运用BP神经网络模型对天津市2013年12月25日-2014年1月9日PM2.5浓度进行仿真预测,最终得到精确预测值.结果表明:温度及风速因素与PM2.5的浓度成反比,湿度因素与PM2.5的浓度成正比,而且通过BP神经网络模型对于“离散样本”、“气象参数不确定性”的实际天气情况可以得到较高的预测精度.  相似文献   

18.
基于wavelet-SVM的PM10浓度时序数据预测   总被引:1,自引:0,他引:1  
王平  张红  秦作栋  姚清晨  耿红 《环境科学》2017,38(8):3153-3161
太原是以煤炭为主要能源的重工业城市,PM_(10)(particulate matter)是太原市的主要大气污染物,因此研究其变化趋势,并给出污染物浓度预测结果,为相关部门进行大气污染防治,为突发污染事件应急提供理论支持是一项非常重要的工作.支持向量机(support vector machine,SVM)应用于PM_(10)污染物浓度时序数据预测时,表现出良好的泛化能力.在预测模型建立过程中通常选择历史数据作为学习模型的输入特征,然而这样的数据表示形式,结构单一,信息表达不完备,在很大程度上将影响预测模型的泛化能力.本文以山西省太原市城区4个监测站点的PM_(10)日浓度数据为研究数据,通过小波变换(wavelet transform)将一维输入数据转化为由低频信息和高频信息构成的高维数据,并以该数据为输入数据建立wavelet-SVM预测模型.结果表明,相较于传统SVM模型预测,wavelet-SVM模型预测结果具有更高的精度,尤其能更加准确捕捉到PM_(10)浓度突变点,为大气污染预警提供有效信息支持,并且wavelet-SVM模型对于PM_(10)浓度时序数据变化趋势的预测精度有明显提升,能更好地预测PM_(10)浓度变化趋势,揭示PM_(10)浓度时序数据内在规律.  相似文献   

19.
应用箱模型预测地下车库空气污染物浓度   总被引:1,自引:0,他引:1  
利用箱模式理论,结合地下车库空气污染物的动力学过程,探讨了地下车库空气污染物浓度的预测计算方法,得出Ci=C0+S/a,并分析了其影响因素。通过实例应用,说明箱模式可应用于地下车库污染物浓度的预测,而且为需排烟通风场所的空气交换率等合理选择提供了较为可信的理论基础。  相似文献   

20.
文剑平 《环境科学》1990,11(4):26-30
以野外监测数据为基础,应用模糊综合评判方法掌握大气污染物的变化规律,然后采用熏气试验测定植被对污染物的净化速率,建立大气污染物的植被控制模型,并以此提出了益阳市大气主要污染物的植被负荷及绿化设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号