首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 125 毫秒

1.  基于微电极技术的反硝化滤池生物膜特性分析  
   宋慧敏  周小红  张永明  施汉昌《中国环境科学》,2012年第32卷第5期
    为研究反硝化滤池中溶解氧对反硝化作用的影响,制备性能良好尖端直径在30μm以内的氧(O2)以及硝酸盐(NO3-)微电极,以此为测试工具,对反硝化滤池中生物膜内部O2、NO3-微环境分布进行测试,通过建立扩散-反应方程,获得生物膜微环境耗氧及反硝化活性特征.研究结果表明,溶解氧在生物膜内部呈明显的下降趋势,从主体溶液氧浓度约1mg/L下降至生物膜300μm深度处约为0.生物膜内部反硝化活性区域发生在300~600μm深度范围内.该条件下反硝化滤池生物膜的氧利用速率常数以及反硝化速率常数之间的比值为1.46,溶解氧对反硝化过程的影响是显著的.    

2.  反硝化新工艺生物膜-电极反应器  被引次数:2
   张少辉  郑平  华玉妹《环境科学与技术》,2004年第27卷第4期
   介绍了新型反硝化工艺 -生物膜 电极反应器 (BER)的作用机理 ,综述了影响BER处理能力的因素 ,提出了需要研究的方向。    

3.  基于硝酸盐液膜微电极的动态膜反硝化特性研究  
   周小红  施汉昌  蔡强《环境科学》,2006年第27卷第9期
   制成性能良好的硝酸盐微电极与氧化还原电位(ORP)微电极,对动态膜在不同进水COD负荷下的内部反硝化过程进行研究.结果表明,动态膜中的反硝化作用出现在膜水界面0.6~1mm以下;在反硝化发生的区域,用ORP微电极测得氧化还原电位在88.6~-128.4mV之间,是反硝化发生的适宜ORP范围.当进水COD负荷为0.45 kg/(m3·d)时,动态膜的反硝化速率(以氮计)最大,可以达到0.634 7×10-6mol/(L·s).增加进水COD负荷能够拓展动态膜内部的    

4.  电极-生物膜法处理铜酸洗废水  被引次数:3
   吴未红  袁兴中  曾光明  李文卫《中国环境科学》,2005年第25卷第2期
    采用自行设计的反应器,用电极-生物膜法对铜酸洗废水进行了直接处理.结果表明,经过铜离子梯度驯化的反硝化微生物可以适应铜离子的存在并有效完成反硝化过程,在最佳工艺条件(电流密度为0.1mA/cm2,C/N为1.07)时,出水中总无机氮(TN)去除率达到98%以上,铜离子浓度<1mg/L,pH值在7左右,且不存在二次污染.电极-生物膜法可同步高效地实现中和、反硝化及铜离子的去除.验证了通过交换电极回收铜的可行性.    

5.  温度和C/N比对生物膜反硝化速率的影响  被引次数:1
   郑兰香  鞠兴华《工业安全与环保》,2006年第32卷第10期
   温度和C/N比是影响生物反硝化速率的2个重要参数,以反硝化生物膜为对象,研究了温度和C/N比对生物膜反硝化速率的影响.实验结果表明,生物膜在25 ℃下的反硝化速率要比13 ℃下的大;C/N比越高生物膜反硝化速率越大.    

6.  生物转鼓反硝化净化一氧化氮废气  被引次数:5
   张海杰  罗阳春  王家德  吴成强  陈建孟《中国环境科学》,2006年第26卷第3期
    采用自行研制的生物转鼓(RDB)反应器处理NO废气,考察了RDB净化NO的反硝化效率.结果表明,在28℃、pH6.5~7.5、转鼓转速0.5r/min、营养液更新2L/d条件下,挂膜历时12d完成.随着转鼓转速的增加,生物膜和液膜表面更新速率提高,传质效率增加,NO反硝化效率提高;当转速>0.5r/min时,液膜增厚过度增加了传质阻力,NO反硝化效率降低.空床停留时间(EBRT)是决定反硝化效率的重要因素,当进气NO处理负荷一定时,随着EBRT由130s下降到26s,NO的净化效率也由99.7%下降至81.5%.    

7.  反硝化生物滤池的挂膜与启动  被引次数:1
   周碧波  操家顺  徐哲明《环境科技》,2009年第22卷第3期
   研究了反硝化生物滤池的挂膜与启动过程,为反硝化生物滤池的挂膜过程提供理论依据。在滤速1.2ngh(HRT=20min)时,当反硝化生物滤池运行到第25天时,进水硝态氮质量浓度由50mg/L左右下降到25mg/L左右时,硝态氮去除负荷由1.18kg/(m^3·d)下降到1.10kg/(m^3·d),负荷变化很小,说明挂膜成功。在反硝化生物滤池中,氨氮主要由反硝化细菌的合成作用去除,去除率不高。在碳源和硝态氮浓度都充足的情况下,反硝化反应遵循零级反应动力学规律,反硝化速率与污染物浓度无关,只与反硝化菌的数量有关。    

8.  一种新型短程同步硝化反硝化生物膜工艺  
   陈清后  李飞  张雁秋  李晓红《环境科学与管理》,2007年第32卷第10期
   在对完全硝化反硝化、同时硝化反硝化(SND)、短程硝化反硝化(SHARON)和缺氧氨氧化(ANAMMOX)生物脱氮技术的研究和开发进展进行分析后,提出了一种新型短程同步硝化反硝化生物膜工艺,并在连续曝气的条件下,对该工艺进行在线监测.结果表明:NO2-的积累率能够达到80%以上,说明系统中发生了短程同步硝化反硝化现象.    

9.  一体式膜-生物反应器同步硝化反硝化中试试验  被引次数:3
   刘江锋  王志伟  吴志超  王文标  顾国维《环境工程》,2007年第25卷第1期
   当污泥浓度维持在19~20g/L时,一体式平板膜-生物反应器运行112d,通量稳定在25.2~25.7L/(m2.h),运行过程除正常曝气以保持对膜进行水力冲刷外没有进行任何物理和化学清洗。试验考察不同DO浓度对同步硝化反硝化效果的影响,结果表明,反应器内有较好的硝化反硝化效应,当温度在18~12℃变动时,膜生物反应器的硝化反硝化效果基本不受温度的影响。    

10.  生物膜法同步硝化反硝化脱氮影响因素研究  
   莫文婷《工业安全与环保》,2014年第3期
   在好氧条件下,向反应器添加悬浮填料进行同时硝化反硝化的试验研究,研究影响生物膜同时硝化反硝化脱氮性能的因素。结果表明,在填料填充率为30%~40%、溶解氧为2~3 mg/L、停留时间为6~8h时,系统对污染物的去除效果较好。    

11.  复三维电极-生物膜反应器脱除饮用水中硝酸盐的试验研究  
   姚静华  赵国智  田光明  张建华  徐文江《环境科学学报》,2012年第32卷第6期
   研究了连续流复三维电极-生物膜反应器在不同电流、温度和pH条件下的反硝化性能.结果表明,在电流从0mA增加至100mA的过程中,NO3--N去除率随电流增大而升高;电流为100mA时NO3--N去除率最高,达到了73.8%,出水NO3--N浓度为8.27mg.L-1;电流高于100mA时,NO3--N去除率略有下降.电流从0mA增加至150mA的过程中,NO2--N积累量先增加后减少;电流为60mA时NO2--N的积累最为严重.温度为31~35℃时,反硝化效果较好,出水NO3--N浓度低于10mg.L-1;温度为35℃时,NO3--N去除率最高,达到了85.5%.pH值为7.2~8.2时,反硝化效果较为理想,出水NO3--N浓度在10mg.L-1以下,NO2--N浓度低于1mg.L-1.该反应器具有较好的pH缓冲性能,进水pH从5.5上升至9.0的过程中,其出水pH可维持在7.6~8.2,NO3--N去除率在59.6%~80.2%.此外,电流、温度和进水pH还对氨氮的生成量和总磷的去除产生明显影响.通过复三维电极-生物膜反应器与纯电化学反应器的对比试验,对氨氮产生和总磷去除的可能原因进行了分析和探讨.    

12.  曝气生物流化床处理高氨氮粪便污水  
   水春雨  周怀东《环境工程学报》,2012年第6卷第8期
   应用好氧曝气生物流化床反应器处理动车集便器粪便污水,研究反应器同步硝化反硝化脱氮及去除COD效能,以及DO对处理效能的影响,通过镜检观察反应器内微生物特性,探究反应器同步硝化反硝化脱氮机理。结果表明,反应器维持DO在2.5 mg/L左右时,对粪便污水中氨氮、TN和COD的去除率分别达99.8%、84.1%和95.5%,在好氧曝气生物流化床反应器中,实现同步硝化反硝化脱氮并去除有机物。分析认为,反硝化脱氮主要发生在生物膜内的厌氧微环境,反硝化反应主要由厌氧反硝化菌完成,曝气生物流化床反应器同步硝化反硝化脱氮机理主要从微环境理论解释。    

13.  电极-生物膜法反硝化脱氮研究进展  被引次数:8
   李勇  朱又春  张乐华《环境科学与技术》,2003年第26卷第5期
   电极 生物膜法是由电化学和生物膜技术相结合而发展起来的一项新型水处理技术 ,在反硝化脱除水中的硝酸盐氮方面具有良好的效果。综述了国内外有关电极 生物膜法反硝化脱氮研究的概况 ,对其基本原理作出探讨 ,并对该法的继续研究作出展望    

14.  曝气生物滤池好氧反硝化脱氮的研究  被引次数:3
   邓康  黄少斌  胡婷《环境科学》,2010年第31卷第12期
   采用某钢铁厂含氮废水,利用生物滤池工艺,研究了曝气生物滤池的挂膜、溶解氧、碳氮比对好氧反硝化脱氮的影响.结果表明,利用富含好氧反硝化菌的富集菌液进行挂膜,16 d基本完成挂膜,脱氮率>90%.当溶解氧较低时(DO为1.5~4.2 mg/L),随着溶解氧的增大,反硝化效率提高,其中以DO为3.5 mg/L时的效果最好,脱氮率为95.4%.随着曝气量继续增加,脱氮率有所下降,当DO为8.0 mg/L时,脱氮率仍有44.8%.可推断系统中有好氧反硝化菌,存在以O2作为电子受体的好氧反硝化现象.随着碳氮比(COD/N)增大,反硝化效果提高.当COD/N为6~7时,基本能够满足反硝化所需碳源.此时脱氮率大于96%,亚硝态氮在整个反应过程中几乎没有积累,COD去除率在85%左右.    

15.  电极面积对无质子交换膜微生物燃料电池协同去污能力的影响  
   冉春秋  李海燕  王冰  孙红杰  李隽截  孙佳楠《环境工程学报》,2013年第7卷第2期
   以间距是180μm的不锈钢网为电极,构建了单室型无质子交换膜微生物燃料电池(MFC)污水处理系统。分别驯化、培养厌氧消化菌和反硝化菌,厌氧消化菌在阳极附着成膜组成生物阳极氧化去除有机污染物,反硝化菌在阴极附着成膜组成生物阴极反硝化去除含氮污染物,研究了电极面积对污染物协同去除能力的影响。当电极面积为45 mm×100mm和45 mm×50 mm时,两系统的开路电压最大值分别为(182.8±6.2)mV和(161.8±5.4)mV,COD、NH4+-N和NO3--N最大去除率分别为96.5%、99.7%、99.7%和85.4%、92.2%、97.9%;出水中NO2--N的含量分别低于(0.072±0.006)mg/L和(0.084±0.008)mg/L。这表明电极面积大的系统具有较好的有机污染物和含氮污染物协同去除能力。    

16.  电极-生物膜法反硝化脱氮的特点和研究进展  
   邓红艳  朱琨《云南环境科学》,2008年第27卷第2期
   阐述了国内外有关电极-生物膜法反硝化脱氮研究的发展概况,对其基本原理和影响因素进行了一些理论探讨,并对该法的继续深入研究作出了展望.    

17.  低碳高浓度含氮废水的生物脱氮技术  被引次数:10
   张蔚萍  陈建中《环境保护》,2003年第6期
   本文简要叙述了低碳高浓度含氮废水生物脱氮的几种新技术:短程硝化反硝化、厌氧氨氧化、同时硝化反硝化及电极生物膜反应器,介绍了它们生物脱氮的机理、特点及实验研究和工业应用情况,并对我国开展生物脱氮技术的研究前景进行了展望。    

18.  异养-电极-生物膜联合反应器脱除地下水中硝酸盐的研究  被引次数:24
   范彬  曲久辉  雷鹏举  李大鹏《环境科学学报》,2001年第21卷第3期
   提出了异养 电极 生物膜联合反应器脱除地下水中硝酸盐的工艺 ,该反应器以异养反硝化为主 ,通过电化学段脱除异养段后水中残留的甲醇或硝酸盐、亚硝酸盐氮 .进水中碳氮比 (质量比 )从 2 2— 2 9,都可保证出水中既无亚硝酸盐积累现象 ,也无残留的甲醇 ,但甲醇略为过量时可提高反应器的处理能力 .2 4℃时处理硝酸盐氮浓度 40mg L的进水 ,反应器最大脱硝负荷为 47g (m3 ·h) .    

19.  固定化三维电极-生物膜法去除污水中硝酸盐氮  被引次数:3
   胡传侠  杨昌柱  杨群  田寸心《环境科学与技术》,2008年第31卷第2期
   本研究将固定化细胞技术用于三维电极-生物膜反应器的阴极微生物挂膜,对现有的三维电极-生物膜反应器进行了改进。同时,以城市污水二级生化处理系统的出水为研究对象,利用自制的固定化三维电极-生物膜反应器进行了反硝化深度脱氮试验。考察了电流强度、HRT、不同C/N值等因素对硝态氮和COD去除率的影响,并通过对比试验证实了固定化细胞技术的使用可提高反应器的反硝化性能。试验结果表明,在电流强度30mA,进水流量9mL/min时,COD的去除率为50%,硝态氮的去除率可达82.03%,反应器NO3--N负荷为0.297mg NO3--N(/cm2.d);同等操作条件下,采用固定化方法挂膜的反应器的脱氮效率可比普通反应器提高20%以上。    

20.  利用聚乳酸作为反硝化固体碳源的研究  被引次数:6
   范振兴  王建龙《环境科学》,2009年第30卷第8期
   利用聚乳酸(PLA)颗粒作为反硝化的固体碳源和生物膜载体,考察了聚乳酸作为反硝化碳源的可行性和温度对聚乳酸颗粒反硝化脱氮性能的影响,并对聚乳酸颗粒表面进行了红外光谱分析和扫描电镜观察.结果表明,PLA颗粒作为反硝化固体碳源和生物膜载体进行反硝化脱氮,接种和驯化时间较长.在30℃,硝酸盐氮初始浓度为50 mg/L时,PLA的平均反硝化速率为2.6×10-3mg/(g.h),13 h内硝酸氮可以完全去除.温度对反硝化速率影响很大,在30~40℃之间反硝化速率较高,一旦偏离适宜温度,反硝化速率降低很快.对PLA颗粒表面的红外光谱分析和扫描电镜观察证实了PLA作为反硝化固体碳源的可行性.PLA颗粒表面的生物膜扫描电镜观察发现生物膜比较薄,以球菌为主.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号