首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
将聚氨酯硬泡在密闭室中破碎至不同粒径,低温加热后进行氧弹燃烧试验,利用气相色谱/质谱联用(GC/MS)定量每个过程中发泡剂CFC-11(CFCl3)的释放量.结果表明:CFC-11释放量随破碎颗粒粒径的减小而增大,过4 mm筛的颗粒释放效果最佳,CFC-11释放量占其总量的67%;泡沫中w(CFC-11)为20%左右,其中77%的CFC-11包裹在泡孔中,23%被泡沫固相吸附;即使将泡沫过1 mm筛,部分未打破泡孔中仍有6%的CFC-11,当破碎粒径接近泡孔平均直径0.3~0.4 mm时,CFC-11释放量保持不变,吸附于泡沫固相中的CFC-11在破碎过程中很难释放.  相似文献   

2.
将聚氨酯硬泡在密闭室中切割破碎,破碎后的颗粒置于密闭瓶中并对其加热及常温下长期放置,用GC/MS测量切割破碎和加热时CFC-11的释放量,以及长期放置时CFC-11释放量。结果表明:破碎处理PUR泡沫时,CFC-11的释放分为瞬间释放、短期释放和长期释放三个阶段。将硬泡破碎至<8 mm、<4 mm、<1 mm和<0.5 mm时,CFC-11瞬间释放量分别占CFC-11总量的40.72%、65.24%、70.79%和75.16%;当破碎粒径<0.5 mm时,包裹于硬泡泡孔中的CFC-11全部释放;PUR泡沫破碎后,短期释放和长期释放同时发生;根据理想数学扩散模型和实验所得扩散系数估算,1~10 mm颗粒中残留的CFC-11长期释放时间为2.4~120年。  相似文献   

3.
废旧聚氨酯硬泡热解特性   总被引:1,自引:1,他引:0  
采用热重分析仪对废旧聚氨酯硬泡在氮气中的热失重行为进行了研究,并对升温速率、热解终温对热解的影响进行了分析. 结果表明:在氮气气氛条件下,废旧聚氨酯硬泡热解主要发生在200~492 ℃;随着升温速率的提高,废旧聚氨酯硬泡热失重时挥发分初析温度向高温方向偏移,失重速率峰值(DTGmax)显著增大.利用热重-红外(TG-FTIR)联用方法对氮气气氛中10 ℃/min升温速率下的样品热解气体产物进行了检测. 结果表明:废旧聚氨酯硬泡热解产物有H2O,CO2,CO,CFC-11,以及含氯化合物、烯烃类、烷烃类和带有苯环等官能团的化合物,且主要气体产物有相似的析出规律.  相似文献   

4.
提出一种全新的聚氨酯泡沫塑料中CFC-11总含量的测量方法.在密闭箱中将PUR硬泡破碎成粒径小于0.5 mm的细颗粒,使用GC/MS测量密闭箱中CFC-11浓度,得出破碎时释放出的CFC-11质量;将破碎的细颗粒用管式炉高温加热,使吸附于细颗粒中的CFC-11释放并用气样袋收集,使用GC/MS测量气样中CFC-11浓度,得出吸附于PUR硬泡固体中的CFC-11质量,最后将两者相加得出总含量.  相似文献   

5.
废冰箱保温材料低温热解及气体成分分析   总被引:4,自引:3,他引:1  
在80~220℃内,通过热重分析仪-傅立叶变化红外线光谱(TGA-FTIR)联用研究半球牌和雪花牌冰箱保温材料(聚氨酯硬质泡沫,简称PUR泡沫)热解特性.结果表明,PUR泡沫的质量损失随温度的增加而快速增大.80~160℃的主要气体化合物有多元醇、氟氯化碳化合物(CFCs)和含氯烷烃,并未发生热分解;170~220℃时发生初始热分解,主要是聚合物主链上的C-O键发生断裂,分解成多异氰酸酯和多元醇,同时还有烯烃产生.在160℃以下加热PUR泡沫可快速移除包裹和吸附于泡沫中的CFCs,但在加热期间,必须收集和处理CFCs.  相似文献   

6.
废聚氨酯硬泡热处理特性及产物检测分析   总被引:1,自引:1,他引:0  
利用热重分析仪和管式炉研究了废弃聚氨酯硬泡热处理特性并对热处理产物进行了检测分析。研究结果表明,废聚氨酯硬泡热处理过程呈单一剧烈失重峰,热失重主要发生在200~440℃之间,600℃热分解基本完成;FTIR谱图初步分析发现加热分解过程中有大量CO和CO2产生,且热处理过程中可能有O-H、C-H、C=O及带有苯环的物质生成。通过GC/MS检测分析结果显示热处理液体产物中检出多元醇以及苯胺、p-苯胺、苯甲腈等多种芳香类化合物,气体产物以低碳的烷烃和烯烃为主,可见FTIR和GC/MS分析结果有很好的一致性。研究结果显示,气体产物检测出有机氯化合物,这可能是聚氨酯硬泡生产过程中加入的氟利昂类发泡剂所致。  相似文献   

7.
采用熔融碱法处理CFC-12,考察了不同因素对于CFC-12转化率的影响。结果表明:当进口气体浓度300-2527 mg/m3时,在有水蒸汽,反应温度720℃,温度越高越有利于CFC-12的转化,NaOH用量60 g,气体流量25mL/min处理效果好,CFC-12的转化率达到90%。而且CFC-12的分解产物被NaOH吸收固化,实现了CFC-12的无害化处理。  相似文献   

8.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1  
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大, pH值为7.5时,在15~35℃范围内, 30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

9.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1  
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大,pH值为7.5时,在15~35℃范围内,30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

10.
湿污泥热解制取富氢燃气影响因素研究   总被引:11,自引:0,他引:11       下载免费PDF全文
采用管式炉热解装置,在700~1000℃温度范围内对不同含水率的生物污泥进行中高温常压热解实验,研究了加热模式、热解终温、物料含水率及升温速率对热解产物产率及气相产物组成的影响规律.结果表明:待温度达到设定温度后,迅速将物料送入反应区的加热模式有利于得到高品质燃气;高温能减少固体碳和焦油的生成,促进富氢气体产生;同时,随着物料含水率的增加,氢气体积分数从17%提高到36%,当含水率为84%时,H2+CO的含量(体积分数)达到最大值;提高热解升温速率能使气相产物产率得到相应增加.湿污泥在高温条件下进行的快速热解过程,一次性完成了污泥干燥、热解和气化,更有利于氢气组分和其他可燃气体的生成,所得气体热值高达12MJ.m-3以上.  相似文献   

11.
使用管式炉模拟村镇生活垃圾焚烧过程,研究不同焚烧温度和不同垃圾含水率条件下,村镇垃圾焚烧烟气中多环芳烃(PAHs)、氯苯及苯系物的生成和分布特性.结果表明,焚烧温度为550℃时,烟气中多环芳烃和氯苯的释放量最大,当温度小于550℃时,多环芳烃和氯苯的释放量随温度升高而增加,温度大于550℃时,多环芳烃和氯苯的释放量随温度升高而降低.高温焚烧不仅可以抑制烟气中多环芳烃的浓度及减少大分子量PAHs的排放,还能降低氯苯的释放量和氯代数,从而减小村镇垃圾焚烧烟气中的毒性;苯系物随着温度升高,由热解转变为高温合成,释放量也随着增加.水分对多环芳烃和氯苯有较大影响,对苯系物的影响较小.在400℃条件焚烧时,水分含量对多环芳烃总体上是促进的,而在850℃焚烧条件下则表现出抑制作用;而水分对氯苯则均表现出抑制作用,并且可以降低氯苯化合物的氯代数.  相似文献   

12.
PVC热解过程中HCl的生成及其影响因素   总被引:1,自引:0,他引:1  
采用热重分析仪(TG)对聚氯乙烯(PVC)的热解特性进行研究.在不同条件下进行PVC热解制取氯化氢(HCl)实验,研究载气流量、入料量、热解时间和热解温度对氯化氢产率的影响,得出最佳热解条件;采用离子色谱(IC)、气相色谱(GC)、气质联用仪(GC-MS)对热解产物进行化学分析,揭示PVC热解制取HCl过程的反应机理.结果表明:PVC热解制取氯化氢的最佳热解条件为载气流量100m L/min、热解时间30min、入料量1.2g和热解温度400℃;PVC热解存在2个失重阶段,即260~320℃和390~600℃;随热解温度升高,焦油产率由0.95%升高到20.29%、HCl产率由25.69%升高到53.76%,而半焦产率则由54.39%下降到11.27%、气体产率变化范围为9.09%~18.97%;当热解温度低于400℃时,气体组分仅检测到H2、C2H4、C3H6;当热解温度高于400℃时,检测到的气体组分为H2、CH4、C2H4、C2H6、C3H6、C3H8;随着热解温度的升高,焦油组分中不稳定组分逐渐转化为稳定组分.PVC热解制取HCl的第1反应阶段主要是脱除HCl的链式反应,同时生成少量的苯等芳香族化合物及环烷烃等有机化合物;第2反应阶段主要为少量HCl生成、焦油的结构重整、分子重排、脱苯环和同分异构化等.  相似文献   

13.
基于CFC-11(CCl3F)和CFC-12(CCl2F2)在家用制冷、工商制冷、汽车空调、气雾剂、烟草和泡沫等应用行业的消费数据、淘汰进程等计算了中国历年CFC-11和CFC-12的消费量,进而利用相应的排放方程计算了其历年排放量及未来的预测排放量.计算结果表明,从1978年中国开始消费到将来完全淘汰CFCs为止,中国CFC-11和CFC-12的总消费量分别为39.79×104t和40.97×104t.与国际公约对中国的要求相比,仅CFC-11和CFC-12,中国就少消费了19.78×104t ODP(臭氧层耗损潜能值)的CFCs物质.中国CFC-11和CFC-12的总排放量分别为全球1950~1999年50年间排放量的4.66%和3.16%,人均排放量及单位国土面积排放量均远远低于全球平均水平.  相似文献   

14.
随着我国工业和城镇的快速发展,化石能源的大量使用使得环境中多环芳烃(PAHs)残留量不断增加,给环境和人体健康带来严重危害。以2~4环PAHs为研究对象,探讨了热脱附温度、时间以及PAHs自身结构对热脱附效果的影响,简要分析了热脱附处理对土壤性质的影响,评估了管式炉热脱附的能耗。结果表明:低环PAHs的脱附率随着脱附温度的升高、脱附时间的延长呈升高的趋势;在脱附温度为300℃、脱附30 min条件下,2环PAHs(2R-PAHs)被完全去除,3环PAHs(3R-PAHs)和4环PAHs(4R-PAHs)的去除率分别为93.22%和83.85%。PAHs各组分满足修复目标DB11/T 811—2011《北京市场地土壤环境风险评价筛选值》标准的优选条件,具体如下:萘(Nap)在脱附温度为100℃、脱附10 min时修复达标;菲(Phe)和蒽(Ant)修复达标条件分别为250℃、30 min和150℃、60 min;荧蒽(Fla)和芘(Pyr)土壤残留量基本均高于标准筛选值,需进一步调整热脱附工况参数,或辅助添加改性剂协同修复以降低成本。热脱附后土壤粗颗粒比例减小,与扫描电镜中大颗粒破碎为小颗粒现象相符。该结果可为热脱附技术在PAHs污染土壤修复的应用提供理论参考。  相似文献   

15.
基于改性铜锰氧化物作为CO催化活性组分,分别制备了催化剂原粉、以泡沫金属、堇青石为载体的两种整体式催化剂,在实验室配气条件下对比了3种样品的CO催化效率及稳定性,优选了堇青石整体式催化剂,并在某钢厂实际烧结烟气条件下测试了其在不同催化剂负载量、空速、温度下的CO催化效率、稳定性以及衰减后样品催化特性;最后批量制备了2m3优选整体式催化剂并开展了6000m3/h烧结烟气CO净化中试实验.结果表明,烟气高浓水蒸气显著抑制CO催化反应,经240h催化后T90最大提升38℃;催化剂负载量越高,T90越低,催化效率衰减时间越短,稳定后的效率越高,但随着空速增加,该优势减小;1440h(2个月)中试实验中,进气温度185~195℃下,CO催化效率大于85%(平均90%),出口CO浓度低于1000×10-6,出口平均烟温达220℃,具有节能减排双重效益.  相似文献   

16.
北京大气中CFC-11的浓度观测与变化趋势   总被引:5,自引:1,他引:5  
近几年大气中CFC的浓度在人类活动的影响下发生了迅速变化,考虑到CFC浓度变化对平流层臭氧和全球变暖的影响,采用两步深冷冻浓缩自动进样系统,配以气相色谱/质谱联机对北京大气中的CFC-11进行了连续观测.结果表明,1999~2003年CFC-11的浓度季节变化均呈单峰形态,峰值出现在7~8月,月平均浓度最高值为1149.5±531.9×10-12(体积分数);谷值出现在春季的3~5月份,月平均浓度最低值为487.5±131.5×10-12(体积分数);北京大气中CF-11年平均浓度在观测时间段内呈先上升后下降的趋势,其中1995~1998年增长较快,平均增长率为17.9%,1999年后呈缓慢下降趋势,平均下降率为10.7%,平均浓度是Mauna Loa全球基准观测站观测到大气本底CFC-11浓度的3~5倍.  相似文献   

17.
黏胶基活性炭纤维对三氯一氟甲烷的吸附性能   总被引:1,自引:0,他引:1  
采用动态吸附试验,利用自制的试验装置研究了黏胶基活性炭纤维[Viscose-Based Activated Carbon Fibre (Viscose-Based ACF)]对三氯一氟甲烷(CFC-11)气体的吸附效果. 在进口ρ(CFC-11)为0.5~8.0 mg/L,空塔气速为0.2 m/s,气体体积流率为0.72 m3/h的条件下,计算出黏胶基活性炭纤维对CFC-11气体的吸附,容量为0.788 g/g,传质区高度为0.077 2 m,全床层饱和度为65.47%,并作出活性炭纤维(AFC)的穿透曲线. 用Freundlich方程对等温吸附曲线进行拟合显示,进口ρ(CFC-11)在0.5~8.0 mg/L时,Freundlich方程较好地拟合了等温吸附曲线,且便于实际计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号