首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
三峡水库主要入库河流氮营养盐特征及其来源分析   总被引:47,自引:29,他引:18  
以2004~2005年的三峡水库3条主要入库河流(长江、嘉陵江、乌江)中的水文、水质的调查数据为依据,研究了三峡水库入库河流中主要的水文变化特征、氮营养盐的季节性分布规律及其形态组成.结果表明,3条入库河流的流量、流速呈现季节性变化,三峡水库入库河流的主要水文特征值已处于水华暴发的危险范围内,很容易发生水华.3条入库河流中总氮含量年均值都在1.55~2.15 mg/L之间,总体偏高,乌江武隆断面的总氮浓度最高,嘉陵江北碚断面次之,长江朱沱断面最低,并且3条河流丰水期水体中总氮含量均高于枯水期,说明非点源对氮污染影响较大;溶解态无机氮(DIN)是总氮的主要存在形式,而其中又以硝酸盐氮(NO3--N)为主,平均占到DIN的70%以上.氮素污染多以还原态氨氮(NH4 -N)的形式排入水体,经过硝化作用,NH4 -N氧化成亚硝酸盐氮(NO2--N),然后再氧化成稳定的NO3--N,并且消耗掉水体中大量的氧.入库河流水体中的NO3--N主要来自农田径流、城市污水、城市径流以及淹没土壤的释放,NH4 -N的来源主要是城市污水、工业废水以及少量的生活垃圾和船舶废水.  相似文献   

2.
三峡水库上游河流入库面源污染负荷研究   总被引:31,自引:7,他引:24  
借鉴水文分割法的原理,在基流分割的基础上,建立了面源污染负荷估算公式. 基于相关性分析、回归分析,提出了污染类型判定和数据补插原则. 以2004和2005年的水文水质数据为基础,将该方法应用于三峡库区上游河流入库面源污染负荷研究, 并采用相关系数法作为对比,对该方法在应用中可能导致的结构性偏差予以探讨. 结果表明,2004年嘉陵江、长江干流、乌江三江入库CODMn,总氮和总磷的污染负荷(以包含溶解态和颗粒态成分的总物质通量表示)分别为168.96×104,70.30×104和10.95×104 t;2005年分别为228.24×104,66.64×104和14.24×104 t;在总量组成中,面源是三江入库污染物的主要来源,占总入库负荷的60%~80%;在空间分布上,长江干流对入库面源污染负荷的贡献占绝对优势,嘉陵江、乌江的面源污染总贡献率仅占13.4%~39.4%;在营养物负荷组成方面,氮对水体的影响以溶解态氮作用为主,磷对水体的影响以颗粒态磷作用为主. 水文分割法的改进值得进一步关注,但在尚未出现十分科学、合理的改进算法时,该方法仍不失为面源负荷研究的有效方法.   相似文献   

3.
三峡库区表层沉积物营养盐时空变化及评价   总被引:9,自引:8,他引:1  
卓海华  邱光胜  翟婉盈  刘云兵  兰静 《环境科学》2017,38(12):5020-5031
三峡工程开建以来,三峡水库长江干支流水文形势发生了重大变化,水体流态及悬浮物沉降条件的改变可能导致库区表层沉积物性状的改变.对2000~2015年三峡水库长江干流江津至坝址段和嘉陵江、御临河、乌江、小江、大宁河、香溪河等主要入库支流河口表层沉积物中营养盐含量水平、时空变化及污染状况分析和评价.结果表明:干流表层沉积物中总磷各断面含量平均值在678.2~928.6 mg·kg~(-1)之间,总氮质量分数平均值在0.203%~0.362%,钾元素质量分数平均值在1.74%~2.37%之间,有机质质量分数平均值在0.94%~1.54%之间;支流河口表层沉积物中总磷各断面含量平均值在490.1~832.3 mg·kg~(-1)之间,总氮质量分数平均值在0.257%~0.495%,钾元素质量分数平均值在1.69%~2.32%之间,有机质质量分数平均值在1.21%~2.27%之间.干支流绝大部分断面表层沉积物中总磷、钾均值与背景值基本相当,但总氮均值明显高于背景值、有机质均值则显著低于背景值.干支流各断面沉积物中营养盐含量未表现出明显的岸别差异;不同的营养盐在沉积物中含量沿程变化趋势呈现出较明显的差异.不同水期干支流沉积物中营养盐含量存在一定程度的波动;蓄水对表层沉积物中营养盐含量影响有限,未出现明显地随蓄水进程而进一步富集现象.有机指数和有机氮污染评价结果表明,三峡库区表层沉积物环境状况以较清洁为主,仅个别支流和局部时段会呈现较明显的有机污染现象,但均存在较明显的有机氮污染.三峡库区表层沉积物中营养物质存在一定的生态风险,营养物质生态风险主要来自TP和TN.  相似文献   

4.
三峡库区干流总磷浓度变化趋势分析研究   总被引:3,自引:0,他引:3  
通过分析2000年-2015年的三峡库区长江、嘉陵江、乌江干流总磷浓度数据,掌握三峡库区总磷总体水平,长江干流总磷浓度为0.135±0.043 mg/1,为Ⅲ类水质;嘉陵江总磷浓度较低,为0.075±0.033 mg/1,为Ⅱ类水质;乌江干流总磷浓度较高,约为0.403±0.288 mg/1,为V类水质.长江重庆段入境朱沱断面的总磷浓度在枯、丰水期呈显著上升趋势,出境培石断面的总磷浓度在枯、平水期呈显著上升趋势.乌江干流入境万木断面和入库锣鹰断面总磷浓度变化趋势一致,都表现为先升高后降低.从2009年开始升高,在2011年或2012年达到峰值,最大浓度超过1.0 mg/1,然后开始逐年下降,到2015年浓度下降到0.2 mg/l.  相似文献   

5.
三峡水库水体溶解磷与颗粒磷的输移转化特征分析   总被引:3,自引:3,他引:0  
根据河流上、下游断面间水、沙和磷的输运系数差异,建立了一种分析河流水体磷的输移转化特征的判定方法.基于2015年1月(枯水期)和7月(丰水期)三峡水库的径流量、输沙量和水体磷形态数据,应用该方法分析了三峡水库水体磷的输移转化特征.结果表明,两个水期三峡水库水体均以TDP为主要磷形态,TDP通量占总磷(TP)通量的51%~96%;枯水期,三峡水库TDP表现为移出作用,主要由三峡拦坝蓄水促进泥沙颗粒吸附TDP引起,丰水期则表现为添加作用,与外源性含高浓度TDP的水量输入有关.在两个水期,三峡全库区泥沙和TPP均呈明显的沉降滞留特征,且TPP相对于沙量呈添加作用,一定程度上说明TDP被泥沙颗粒吸附而转化为TPP作用相对更强.三峡水库清溪场至万州段为水、沙和磷的主要滞留区域,与该区段泥沙颗粒粒径细化、颗粒吸附磷能力增强有关.  相似文献   

6.
磷(P)是长江流域备受关注的污染物.金沙江下游向家坝水库和溪洛渡水库分别于2012年和2013年蓄水成库,极大改变了库区及长江宜宾至江津段(金沙江、岷江和长江“三江口”与三峡水库之间)水沙条件和磷的赋存及输移规律.朱沱断面是宜宾至江津段代表断面,既可以反映金沙江梯级水库及岷沱江水环境变化等所产生的综合效应,又是三峡水库的入库断面.研究了2002~2019年长江朱沱断面径流量、悬浮泥沙(SS)浓度与输沙量、磷浓度与通量[分总磷(TP)、溶解态磷(DP)、颗粒态磷(PP)]年际变化及水期特征,基于河流基流分割原理对磷的来源进行了解析.结果表明,18年来朱沱TP和PP浓度与通量丰水期高于平、枯水期;PP与SS正相关性的规律未变.从2002~2019年,TP、 PP和DP浓度与通量总体上呈先升高后下降趋势,且向家坝水库运行是SS、输沙量和TP、 PP浓度与通量下降的重要时间节点.相对于2002~2012年,2014~2019年SS与输沙量分别下降了94%和77%,TP与PP浓度分别下降了46%和70%,TP与PP通量分别下降了58%和74%,下降主要发生于丰水期,其次是平水期.两座水库形成后,...  相似文献   

7.
新水沙条件下长江中下游干流水体总磷时空变化分析   总被引:3,自引:0,他引:3  
卓海华  娄保锋  吴云丽  王瑞琳  陈杰  兰静 《环境科学》2020,41(12):5371-5380
长江干流三峡及上游水库群陆续建成运行后,中下游干流水体已形成新的水沙条件,其对水体磷含量的影响备受关注.为此,研究了新水沙条件下中下游干流总磷浓度的时空分布特征.结果表明:①三峡蓄水后,长江中下游干流水体TCP(澄清30min样品)浓度基本在0.10~0.15 mg·L-1之间变动,在时间尺度上总体呈先上升后降低趋势,在空间尺度上沿程呈现升高趋势;水体中溶解态总磷(TDP)浓度随时间推移缓慢升高.②水体中可沉降固体对不同江段水体中磷含量存在不同程度影响,南津关、汉口和吴淞口下23 km这3个断面TCP/TP比值中位值分别为0.900、0.720和0.609,从上游到下游依次降低;水体中溶解态总磷(TDP)占总磷(TP)比例沿程呈下降趋势,而颗粒磷(TPP)占总磷(TP)比例沿程呈上升趋势,南津关、汉口、吴淞口下23 km等3个断面TPP/TP比值中位值分别为0.439、0.567和0.738.③按照《地表水环境质量标准》(GB 3838-2002)要求,以TCP浓度进行水质评价,评价结果显示长江中下游干流水质总体良好.但若考虑水体中可沉降固体影响,以水体总磷(TP)浓度进行评价,会得出相对较差的结果,尤其是在靠近河口段.④长江中下游干流主河道靠上游河段不同监测断面内部各测线、测点磷浓度差异较小,河口附近则差异明显.⑤长江中下游干流城市江段近岸水域水体中TCP浓度明显高于相应河段主河道常规监测结果,局部河段存在明显岸边污染带.  相似文献   

8.
沱江是三峡水库上游重要的入库河流和主要的总磷(TP)来源,研究沱江流域TP时空变化特性及其成因对三峡水库TP入库污染物允许通过量达标和流域TP污染治理具有重要意义.利用2011—2018年沱江流域干支流20个国控和省控监测断面的水质数据和断面汇流区污染源数据,采用Pearson相关性分析法、单因素分析法和层次聚类分析法...  相似文献   

9.
王维  李叙勇 《环境科学》2021,42(2):681-687
磷在河流中的输移-滞留过程是河流生态系统中营养物质循环的基本组成,也是评价河流生态系统健康的重要指标之一.为探究拦沙坝对磷输移-滞留过程的影响,选取张家口清水河流域内拦沙坝河段为研究区域,在4个代表性断面对地表水中各形态磷质量浓度和径流过程进行监测,并收集当地实时降雨数据.结果表明:①拦沙坝下游与上游的总磷(TP)、总溶解态磷(TDP)、总颗粒态磷(TPP)和悬浮物(TSS)的质量浓度平均值之比分别为50%、79%、47%和58%,表明拦沙坝对磷和泥沙有明显的滞留作用.②在非降雨期TP、TDP和TPP在拦沙坝河段表现为滞留,而在降雨期TP、TDP和TPP在拦沙坝河段既有滞留也有输移,其中发生滞留的降雨场次占总降雨场次之比分别为63.6%、9%和81.8%,拦沙坝对磷的输移-滞留过程受降雨事件的时间间隔、持续时间和强度影响.③在单次降雨或连续降雨的降雨量超过56 mm后,拦沙坝对磷滞留作用明显下降.  相似文献   

10.
磷是水域重要的营养或污染物质之一,主要随河川径流循环,河流大型水库建设和运行将对磷的输运和转化产生重要影响.基于三峡水库2008~2016年实测水文和水质资料,建立了总磷(TP)通量和泥沙通量的统计模型,利用模型插补TP的日过程浓度后建立了TP通量计算公式,分析了三峡水库TP浓度时空变化特征、通量变化及滞留效应.结果表明,不考虑区间小支流TP入汇影响, 2008~2012年,三峡入库TP浓度年际变化为0.196~0.290mg·L~(-1),年内TP浓度变化趋势呈"M"型,具有明显的双峰特性,三峡干流上游至下游TP浓度基本表现为沿程减小,部分年份清溪场断面TP浓度高于寸滩,该时段三峡年均入库TP通量和滞留率分别为8.23万t和49.76%. 2013~2016年,三峡年均入库TP通量和滞留率明显减小,分别为4.79万t和12.03%.  相似文献   

11.
丰水期环太湖河流与湖区水质比较研究   总被引:7,自引:3,他引:4  
高永霞  蔡琳琳  赵林林  朱广伟 《环境科学》2011,32(10):2840-2848
鉴于环湖河流水质在汛期对太湖的关键性影响,以藻类对不同形态营养盐的利用程度为标准,2008年丰水期对太湖周边32条主要河流的水质进行了细化研究,旨在为太湖的外源河流综合整治提供依据.结果表明,采样河流中望虞河水体的营养盐和悬浮物(SS)浓度都居于最高,水质为劣Ⅴ类;太湖北部河流水体除了营养盐浓度为劣Ⅴ类外,有机质污染在...  相似文献   

12.
三峡小江回水区磷素赋存形态季节变化特征及其来源分析   总被引:11,自引:6,他引:5  
方芳  李哲  田光  郭劲松  张超 《环境科学》2009,30(12):3488-3493
磷被普遍认为是富营养化的限制性因子,但河道型的三峡水库支流回水区在变化的水动力条件下磷的季节变化有其独特性.对2007年3月~2008年3月三峡小江回水区磷素的跟踪观测结果进行了分析.研究期间小江回水区总磷(TP)平均浓度为(61.7±2.7)μg·L~(-1),虽然各采样断面磷浓度差异不大,但其季节变化明显,大体上冬季最高、夏季较高、春季次之、秋季较低.颗粒态磷占TP平均浓度的54.05%,是TP的主要组成部分.结合同期对叶绿素a、悬浮无机颗粒物、悬浮有机颗粒物、河口流量、河口水位等主要环境变量的跟踪观测结果发现,颗粒态磷以吸附于泥沙颗粒表面或同矿质相结合的无机形态为主,并在降雨、径流的作用下进入水体使水中TP含量增加,该现象在低水位运行状态下更加明显.而在高水位运行条件下水动力条件的改变使磷素赋存形态向溶解态形式转变.小江回水区藻类生长对溶解性磷酸盐的生物利用过程十分明显,溶解性磷酸盐浓度同叶绿素a显著负相关.TP亦同叶绿素a呈负相关关系.研究认为,降雨、径流强度的加大及水位的降低虽然带来丰富的营养物,但亦使河道型的回水区水体更新周期缩短;而悬浮颗粒浓度升高导致的水体光学透射性能的下降以及洪水脉冲带来的不稳定的生长环境却阻碍了浮游植物的进一步生长和繁盛,这两方面综合作用的结果可能是小江回水区TP-Chla负相关的原因.  相似文献   

13.
为掌握重庆市主城区次级河流水环境状况,于2013年4月~2014年3月,在重庆市主城区选取6条典型次级河流测定水体理化指标,开展水体总氮(TN)、总磷(TP)污染特征分析及富营养化评价.结果表明:16条河流TN、TP污染较为严重,不同季节TN、TP均超过国际认可的发生水体富营养化临界值;富营养状态指数评价结果表明,各季节所有河流都处于富营养化状态,富营养化程度排序为:盘溪河清水溪跳蹬河花溪河伏牛溪朝阳河.2各次级河流TN、TP季节变化情况较为显著,为春、冬季TN、TP质量浓度高,夏、秋季TN、TP质量浓度低;3河流在各季节TN、TP从上游向下游增加趋势比较明显,污染物沿河流不断聚集,污染物质量浓度递增率最大达到1.25 mg·(L·km)-1.因此,进一步深入研究城市次级河流污染特征对城市水体污染控制具有重要意义.  相似文献   

14.
鄱阳湖入湖河流氮磷水质控制限值研究   总被引:2,自引:1,他引:1       下载免费PDF全文
鄱阳湖近年氮磷营养物浓度逐步升高,入湖河流是鄱阳湖氮磷输入的重要途径.采用BATHTUB模型建立了鄱阳湖入湖河流与湖区ρ(TP)、ρ(TN)的响应关系,模拟了入湖河流执行GB 3838—2002《地表水环境质量标准》中不同氮磷标准限值对湖区水质的影响,发现当入湖河流ρ(TP)执行河流Ⅲ类标准限值或超过Ⅲ类标准限值时,对应湖区ρ(TP)超标;入湖河流执行Ⅲ类及以上湖泊水质标准限值时,湖区水质可以达到Ⅲ类保护目标,但对入湖河流存在一定的过保护现象.因此,以满足现行湖泊水质达标为情景,以湖泊ρ(TP)、ρ(TN)各类别标准限值为目标,试算了入湖河流氮磷控制限值,提出了鄱阳湖入湖河流的氮磷控制限值建议方案,其中鄱阳湖湖体水质目标为Ⅲ类时,入湖河流ρ(TP)、ρ(TN)控制限值分别为0.075和1.20 mg/L,此时入湖河流氮磷控制限值方案既能保证湖泊水质达标,又不会造成对河流的水质控制过于严格.研究显示,基于湖泊水环境质量达标情况试算的入湖河流氮磷所需控制限值,建议可作为解决入湖氮磷污染控制问题的参考.   相似文献   

15.
基于流域或区域点源和非点源磷入河过程的水文学差异,以及影响河流持留作用的主要机制,建立了描述河流段末磷负荷量与流量和水温之间定量关系的二元统计模型;通过逐月的河流水文水质监测数据对模型中4个系数的有效校正和验证,实现了对点源和非点源磷入河过程的准确定量.与现行的水文估算法相比,该模型既考虑了河流磷的持留能力及其时间变异性,也考虑了上游水体输入的磷负荷量,推进了对磷污染过程的定量认识,满足了我国以行政区为主要水污染控制管理单元的现实需要.应用该模型,计算了浙江长乐江集水区2004~2009年的总磷(TP)入河量.结果表明,TP年入河总量为(54.6±11.9)t.a-1,其上游水体输入、点源和非点源的入河量贡献率分别为5%±1%、12%±3%和83%±3%.夏季5~6月和8~9月的非点源TP累计入河量占其全年的50%±9%,增加了引起下游水体藻类暴发的风险.河流TP持留量为(4.5±0.1)t.a-1,占年入河总量的9%±2%;5~9月的TP累计持留量占全年的55%±2%,表明河流持留能力对流域或区域磷素迁移转化过程的调控作用不容忽视.本研究建立的二元统计模型仅需常规的河流水文水质监测数据,无需专业软件知识,且计算结果直接来源于实际的河流水文水质测算值,为实施流域或区域磷污染总量控制策略提供了一种简便、实用、可靠的定量工具.  相似文献   

16.
六叉河小流域不同景观结构中径流磷形态差异分析   总被引:6,自引:3,他引:3  
选取巢湖六叉河小流域,研究了流域内不同类型景观降雨产流过程中径流磷素的形态差异.结果表明,旱地径流中总磷、溶解性总磷、颗粒态总磷、总活性磷、颗粒态活性磷的浓度最高,水稻田次之,河道中最低.颗粒态磷是旱地和水稻田磷索输出的主要形态,颗粒态活性磷占总活性磷的80%以上;而河道径流中各种磷形态浓度值均较低,总磷浓度均值在0.4mg·L-1以下,磷素输出以溶解态磷为主.磷素由旱地经过水稻田向河道传输过程中,颗粒物浓度显著下降,河流中颗粒态磷浓度降低至50%左右,活性组分浓度显著降低.由水塘、沟渠等组成的多水塘系统不仅降低了磷素输出的总量,而且对活性磷有较强的削减作用,在非点源流域控制及水源地水质保护方面有重要意义.  相似文献   

17.
环太湖不同性质河流水体磷的时空分布特征   总被引:6,自引:3,他引:3  
为了解不同性质河流对太湖水体富营养化的影响,于2009年2月(枯水期)、2009年5月(平水期)、2009年8月(丰水期)对环太湖三类9条河流中不同形态磷的沿程和时间变化特征进行了研究.结果表明,总磷(TP)、溶解性总磷(DTP)和溶解性反应磷(SRP)质量浓度随枯、平、丰水期而呈降低趋势,可酶解磷(EHP)质量浓度随着枯、平、丰水期藻类生物量的升高而升高.受生活污水影响的河流水体中各形态磷的质量浓度都是最高的,但由于此类河流从上游到下游水体自净能力很好,其对太湖富营养化的影响最小.受工业废水影响河流在与太湖交界处各形态磷的质量浓度最大,对太湖富营养化的影响也最大.入湖河流的EHP质量浓度多数情况下远远高于SRP质量浓度,EHP对太湖蓝藻的暴发起关键性作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号