首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 656 毫秒
1.
目的研究316L不锈钢在海洋深水环境中的局部腐蚀规律。方法利用自行设计的实验装置在南海170 m水深位置开展316L不锈钢腐蚀模拟实验,并通过电化学测试方法与扫描电子显微镜(SEM)、能谱仪(EDS)等测试手段进行分析。结果浸泡7天时,316L不锈钢表面发生局部腐蚀,但微生物吸附会形成保护性的微生物膜,引起其自腐蚀及击穿电位正移,耐点蚀性能会升高。随着浸泡时间的延长,溶解氧含量逐渐降低,试样表面吸附的微生物膜性质发生变化,导致钝化膜在微生物与Cl-的作用下破裂,自腐蚀电位及击穿电位负移,耐点蚀性能下降。结论 316L不锈钢在海洋深水环境中的耐点蚀性能随着浸泡时间的延长,先降低而后增加。  相似文献   

2.
目的 研究不锈钢在西太平洋海域深海环境中的腐蚀规律。方法 采用深海高效串型试验装置对304不锈钢和316L不锈钢在西太平洋深海环境中进行深海实海腐蚀试验,分析不锈钢的腐蚀形貌、腐蚀速率和点蚀深度规律等,研究2种不锈钢在500、800、1 200、2 000 m海深下的腐蚀规律。结果 304不锈钢与316L不锈钢腐蚀质量损失主要由缝隙腐蚀引起,316L不锈钢的腐蚀程度总体上低于304不锈钢,304不锈钢的腐蚀速率低于0.4 mm/a,316L不锈钢的腐蚀速率低于0.25 μm/a。深海环境中,304不锈钢的腐蚀产物主要是α-Fe2O3、γ-FeOOH、γ-Fe2O3,316L不锈钢的腐蚀产物主要是α-FeOOH、γ-FeOOH、γ-Fe2O3。结论304不锈钢和316L不锈钢在西太深海环境中使用过程中应避免缝隙的形成,降低其发生缝隙腐蚀和点蚀的概率。  相似文献   

3.
目的研究316L不锈钢在南海环境中的缝隙腐蚀行为。方法利用自主设计的实海实验装置,在南海170m水深的位置开展316L不锈钢缝隙腐蚀实验。利用光学显微镜观察试样的腐蚀形貌,利用扫描电子显微镜(SEM)观察腐蚀产物膜的微观形貌,结合能谱仪(EDS)分析腐蚀产物膜的微区成分,并利用荧光显微镜观察缝隙腐蚀试样表面微生物的附着情况。通过对比点蚀试样与缝隙腐蚀试样的腐蚀形貌,并观察缝隙腐蚀试样腐蚀形貌随腐蚀时间的变化,分析研究316L不锈钢在南海环境中的缝隙腐蚀行为。结果实海工况下浸泡120 h后,点蚀试样腐蚀轻微,机械划痕清晰可见,缝隙腐蚀试样表面有腐蚀产物生成,并出现明显的局部损伤。随着腐蚀时间的延长,缝隙腐蚀试样表面的局部损伤发展为浅表局部腐蚀,缝隙口堆积锈红色腐蚀产物,并形成闭塞电池。腐蚀408h后,在Cl~-的催化及微生物膜的加速作用下,缝隙口生成许多细小的点蚀坑,并聚集形成点蚀带,缝隙内部呈现波纹状腐蚀形貌,缝隙外部腐蚀相对轻微。荧光照片可见缝隙腐蚀试样表面有微生物附着。结论316L不锈钢在南海环境中具有较高的缝隙腐蚀敏感性。  相似文献   

4.
目的 研究南海岛礁环境浪花飞溅区中典型不锈钢的腐蚀规律.方法 在南海岛礁进行现场腐蚀试验,利用表面微观形貌观测、腐蚀产物分析及失重测试等手段,对比分析了304、316L和2205不锈钢在浪花飞溅区中的腐蚀形貌、腐蚀速率和腐蚀深度.结果 在浪花飞溅区,304不锈钢的腐蚀速率最大,316L不锈钢次之,2205不锈钢最小;在浪花飞溅区304不锈钢和316L不锈钢局部腐蚀主要以点蚀和缝隙腐蚀为主,2205不锈钢耐腐蚀性良好,局部腐蚀不明显;三种不锈钢的腐蚀产物主要包括 α-FeOOH、γ-FeOOH、γ-Fe2O3.结论 三种不锈钢的腐蚀产物基本相同,但2205不锈钢腐蚀速率变化趋势与另外两种不锈钢明显不同.  相似文献   

5.
目的研究几种典型金属材料在西沙海洋全浸区的腐蚀行为规律。方法通过外场暴露试验,分析EH36和CM690船用钢、316L不锈钢以及5083铝合金材料暴露0.5、1、2a后的腐蚀形貌与动力学规律。结果CM690腐蚀速率要大于EH36,而点蚀深度规律相反。316L不锈钢发生较为严重缝隙腐蚀,5083铝合金则以局部腐蚀为主。结论试验条件下,EH36与CM690钢腐蚀质量损失与点蚀最为严重,316L不锈钢与5083铝合金生物污损严重,伴有局部腐蚀。  相似文献   

6.
316L不锈钢在淡化海水中的耐腐蚀性能研究   总被引:7,自引:4,他引:3       下载免费PDF全文
目的评价316L不锈钢在淡化海水中的耐蚀性能。方法利用电化学和慢应变速率拉伸(SSRT),并结合扫描电镜(SEM)的方法。结果电化学阻抗测试结果表明,随着温度的升高,材料的耐蚀性能下降;循环伏安实验结果表明,随着温度的升高,点蚀击破电位负移;SSRT实验结果表明,316L不锈钢在淡化海水中具有一定的应力腐蚀敏感性(SCC),随着温度升高,敏感性增大,在35℃和50℃,316L不锈钢在淡化海水中的断裂为韧性断裂,在70℃时,断口微观形貌呈现韧窝+少量准解理形貌。结论在淡化海水中,随着温度的升高,不锈钢的耐点蚀性能下降,SCC敏感性增强。  相似文献   

7.
目的 研究载荷大小、加载方式和冷变形对材料裂纹萌生行为的影响规律.方法 采用多轴多试样加载装置,在线测量冷变形316L和308L不锈钢在模拟反应堆高温高压水环境中恒载荷和慢应变速率拉伸状态下的应力腐蚀裂纹萌生行为.结果 加载载荷低于屈服强度时,两种不锈钢均因具有较强的抗点蚀和晶界氧化性能而不易萌生裂纹.高于屈服强度后,...  相似文献   

8.
黑色金属材料在长江淡水中的腐蚀行为   总被引:1,自引:1,他引:0  
通过现场暴露试验,获得了2种碳钢、3种不锈钢及1种不锈钢与碳钢复合板材料在武汉长江淡水中的4年腐蚀试验结果,总结了它们的腐蚀行为。结果表明,Q235和16Mn碳钢在武汉长江中有较高的腐蚀率和明显的点蚀,稳定腐蚀率为0.055mm/a;暴露4a,奥氏体不锈钢304和316L没有明显腐蚀,而马氏体不锈钢430有较明显的点蚀和缝隙腐蚀;马氏体不锈钢0Crl3Ni5Mo与Q345c复合钢板在长江淡水中使用4a后,OCrl3Ni5Mo发生严重的点蚀,说明马氏体不锈钢在淡水中的应用应慎重。  相似文献   

9.
通过现场暴露试验,获得了2种碳钢、3种不锈钢及1种不锈钢与碳钢复合板材料在武汉长江淡水中的4年腐蚀试验结果,总结了它们的腐蚀行为。结果表明,Q235和16Mn碳钢在武汉长江中有较高的腐蚀率和明显的点蚀,稳定腐蚀率为0.055 mm/a;暴露4 a,奥氏体不锈钢304和316L没有明显腐蚀,而马氏体不锈钢430有较明显的点蚀和缝隙腐蚀;马氏体不锈钢0Cr13Ni5Mo与Q345C复合钢板在长江淡水中使用4 a后,0Cr13Ni5Mo发生严重的点蚀,说明马氏体不锈钢在淡水中的应用应慎重。  相似文献   

10.
不锈钢201、304和316L在模拟污水管道反应器中的腐蚀   总被引:1,自引:0,他引:1  
研究了作为污水管道局部修复材料的不锈钢201、304和316L在模拟污水管道反应器中的腐蚀行为.采用动电位法研究了第7、14、21、56 d这3种材料在全部浸没在污水或以2 d为周期交替浸没在污水两种条件下的腐蚀电位和腐蚀速率,采用电化学阻抗谱(EIS)研究了第56 d这3种材料的电极过程,利用扫描电镜(SEM)和能谱(EDS)分析了第56 d腐蚀点的形貌和成分.结果表明,在两种条件下304和316L的耐腐蚀性均好于201,腐蚀速率均小于201;3种不锈钢在交替浸没条件下的耐腐蚀性均优于全浸条件,在交替浸没条件下的腐蚀速率小于全浸条件;在304和316L的表面形成了局部点腐蚀,在201的表面形成了区域性腐蚀.  相似文献   

11.
典型不锈钢在淡化海水中的耐腐蚀性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的研究316L和2205在淡化海水中的耐腐蚀性能,并研究水处理药剂对不锈钢耐蚀性的影响。方法采用电化学试验、慢应变速率拉伸试验、扫描电镜等方法。结果在淡化海水中,316L临界点蚀温度为42.7℃,加入药剂后为70.2℃;2205的临界点蚀温度大于85℃。2205耐缝隙腐蚀性能明显好于316L,药剂对2205也具有一定的缓蚀作用。316L和2205在50℃淡化海水中具有高应力腐蚀抗力。结论 316L不适合直接在淡化海水中应用,但适合在加入药剂的淡化海水中使用;2205适合在淡化海水中应用。  相似文献   

12.
Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl and SO42 − ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号