首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 437 毫秒
1.
近期长江口沉积物中SVOCs的变化及生态风险评价   总被引:9,自引:1,他引:8  
采用GC-MS法对2007年4月24—30日采集于长江口部分区域的沉积物中的64种半挥发性有机物(SVOCs)进行分析测定,并对影响该类污染物分布的主要因素进行了探讨. 结果表明,该区域沉积物中定量检出半挥发性有机物15种,包括多环芳烃类化合物8种,取代苯类化合物1种,酚类化合物2种,酯类化合物3种,其他类化合物1种. 其中,属于我国优先控制污染物的有7种,属于美国优先控制污染物的有12种. 采样点SVOCs的分布未呈现出明显的规律性,其分布受多种因素的影响. 应用ERL与ERM指标进行PAHs的生态风险评价,长江口部分区域不存在严重的生态风险. 应用EEC/ERL进行生态风险细分,各采样点分布在无风险与低度潜在生态风险之内,对生态安全威胁不大.   相似文献   

2.
长江口表层沉积物中半挥发性有机物的分布   总被引:4,自引:1,他引:3  
采用GC-FID方法对2005年11月采集于长江河口区表层沉积物中的64种半挥发性有机物(SVOCs)进行分析测定,并对影响该类污染物分布的主要因素进行了讨论. 结果表明:该区域表层沉积物中共检出半挥发性有机物35种,包括多环芳烃类11种,取代苯类7种,酚类5种,酯类3种,醚类2种和其他类7种. 其中,属于我国优先控制污染物的有7种,属于美国优先控制污染物的有22种. 沉积物中SVOCs的分布未呈现出明显的规律,其分布主要受采样点所处的水利条件、与排污口的相对位置、沉积物颗粒粒径、有机质含量和洪枯季等因素的影响;采样点的水动力条件越弱,与排污口的距离越近,沉积物颗粒粒径越小,导致沉积物中污染物的种类和数量就越多.   相似文献   

3.
长江河口表层沉积物中PAHs的生态风险评价   总被引:8,自引:4,他引:4  
2005年11月26—29日对长江河口部分表层沉积物中多环芳烃类化合物(PAHs)的污染现状进行了调查和研究,分析了其中16种PAHs单体含量. 结果表明,长江河口表层沉积物中属于美国优先控制的16种PAHs共检出15种,仅萘未被检出,w(PAHs)为355.72~2 480.85 ng/g,平均值为1 040.29 ng/g. 表层沉积物中以4环和5~6环PAHs为主,二者之和占w(PAHs)的80%以上. 长江河口表层沉积物中PAHs污染主要来源于矿物燃料的高温燃烧,但部分区域也不排除石油源输入的可能性. 与沉积物风险评估值相比,严重的生态风险在长江河口表层沉积物中不存在,然而排污口附近沉积物存在一定的生态风险.   相似文献   

4.
2013年对长江口及浙江近岸海域62个站位表层沉积物中多环芳烃(PAHs)进行了测定.结果表明,16种美国EPA优先控制的PAHs均有检出,PAHs总量水平(干重)为31.8~384μg·kg-1,平均含量为131.1μg·kg-1.其分布受到陆源输入和点源污染的影响,高值区域出现在长江口2号站位和宁波21号站位附近.与国内外其它海区相比,调查海域PAHs总体处于较低污染水平.调查海域沉积物中PAHs以4环、3环为主,来源分析显示PAHs主要来源于木柴、煤炭燃烧.利用沉积物质量基准法(SQGs)评价结果显示,调查海域表层沉积物中PAHs处于较低的生态风险水平;按照沉积物质量标准法(SQSs)评价结果表明,调查海域表层沉积物的PAHs污染已经具有一定程度的"显见生态负效应",需要采取相应的措施进行污染控制和削减.  相似文献   

5.
长江口水体中PAHs的基本生态风险特征   总被引:3,自引:1,他引:2  
通过对2007年4月24—30日采集于长江口水体7个不同采样点18个水样中的4种典型多环芳烃类化合物(PAHs)的浓度分析,依据3个基础营养级水平(藻、、鱼)的毒性效应〔L(E)C50和NOEC〕,采用欧盟适用于现有化学物质与新化学物质的风险评价技术指南(TGD)中的商值法对长江口水体中的萘、菲、蒽、荧蒽进行了生态风险评价. 结果表明,4种PAHs除蒽外的环境浓度/无影响浓度(PEC/PNEC)都小于1. 说明长江口水体中4种PAHs只有蒽存在一定生态风险,其他3种均未对长江口生态造成威胁.   相似文献   

6.
淮河盱眙段柱状沉积物中PAHs分布及生态风险评价   总被引:8,自引:5,他引:3  
通过对淮河盱眙段柱状沉积物中16种优先控制的PAHs污染物进行GC-MS定量分析,结合210Pb同位素定年,重现了该区域多环芳烃的污染历史. 研究表明, 在柱状沉积物中整个沉积剖面(0~45 cm)w(PAHs)为102.9~306.9  ng/g(以干质量计). 20世纪30年代以后w(PAHs)总体呈下降趋势,但自进入21世纪以来w(PAHs)呈逐年上升趋势,并在2008年达到最高值. 从柱状沉积物的w(2~3环PAHs)/w(4环PAHs)来看,淮河盱眙段沉积物中PAHs污染的历史来源主要是石油类污染. 对照有关沉积物的生态风险评价标准,表层与底层芴出现了负面生态效应,而其他层面的潜在生态风险很小.   相似文献   

7.
长江口潮滩表层沉积物中多环芳烃分布特征   总被引:55,自引:1,他引:54       下载免费PDF全文
长江口滨岸潮滩14个表层沉积物中多环芳烃(PAHs)分析表明,PAHs总量分布范围在0.263~6.372mg/kg.多环芳烃含量随取样位置发生明显的变化,主要特征是在近排污口处含量最大,而远离排污口含量趋于降低.依据荧蒽/芘之比以及2+3环与4环以上PAHs化合物分布特点,表明长江口近岸潮滩沉积物中PAHs主要来自石油类污染物的输入.通过与国内外河口潮滩沉积物中PAHs含量的对比,研究区处于低-中等水平,但已有个别PAHs化合物(如蒽、芴)超过基于生物毒性试验的沉积物质量标准,对潮滩生态将构成一定的潜在危害.  相似文献   

8.
郭雪  毕春娟  陈振楼  王薛平 《环境科学》2014,35(7):2664-2671
采用GC-MS联用技术分析了滴水湖及其水体交换区23个表层沉积物和土壤中16种多环芳烃(PAHs)的含量,探讨其分布特征及来源并对其生态风险进行评价.结果表明,滴水湖沉积物中16种PAHs含量范围是11.49~157.09 ng·g-1,平均含量为66.60 ng·g-1,湖区沉积物中PAHs含量比入湖区低,但比出湖区高.湖区外的沉积物和土壤中PAHs组成主要以中、高分子量PAHs(4环、5~6环)为主,而湖区内表层沉积物中PAHs组成则以低分子量PAHs(2~3环)和高分子量PAHs(5~6环)为主.通过特征化合物分子比值法、主成分分析及多元线性回归模型判源,表明湖区外沉积物和土壤中PAHs来源主要为燃烧源,而湖区内沉积物中PAHs来源为燃烧源和石油类产品泄漏的混合来源.生态风险评价显示,滴水湖及其水体交换区沉积物和土壤中PAHs生态风险较低.  相似文献   

9.
通过液液萃取-气相色谱/质谱法对云龙湖4个代表性点位水样中23种半挥发性有机物(SVOC)和16种多环芳烃(PAHs)进行定性和定量分析,共计检测出15种有害污染物,其中包括10种多环芳烃(PAHs)、3种三氯苯和2种酞酸酯类.参考地表水环境质量要求[1],其污染物农度均在安全范围内.与其他地区湖库水质比较,云龙湖水体中PAHs污染处于较高水平,从PAHs污染物检出数量以及各组份间分配关系来看,该湖主要的污染途径为地表径流、雨水沉降以及人类活动等.  相似文献   

10.
为探明浙闽沿岸泥质区南部表层沉积物的多环芳烃(PAHs)污染状况,测定了浙闽沿岸泥质区南部的32个表层沉积物样品中多环芳烃的含量,探讨了浙闽沿岸泥质区多环芳烃的分布、来源及生态风险。结果表明,浙闽沿岸泥质区南部表层沉积物PAHs总浓度介于(12.95~156.05)×10-9,相对于其他区域属于较低水平。特征分子比值法和SPSS分析结果均表明本研究区域中PAHs主要来源于煤炭、石油的燃烧,并有部分石油源。生态风险评价结果表明浙闽沿岸泥质区南部表层沉积物PAHs存在一定程度的生态风险,应当多加留意并采取相关措施进行防护。  相似文献   

11.
长江口水体中半挥发性有机污染物的分布特征   总被引:3,自引:0,他引:3  
采用气相色谱法分析了长江口水体中64种半挥发性有机污染物(SVOCs)的含量,共检出其中的50种SVOCs,主要包括多环芳烃类、酚类、酯类、卤代烃类、取代苯类和醚类.其中属于我国优先控制污染物的有16种,属于美国优先控制污染物的有42种,属于我国《地表水环境质量标准》(GB3838-2002)控制的有10种.长江口水体中SVOCs的空间分布表明,南港附近城市排放的工业废水和生活污水是影响水体中SVOCs含量的重要因素之一,表现为排污口附近水域各类SVOCs含量均较高.水体中2,4-二硝基甲苯和六氯丁二烯的检出值超过了中国地表水环境质量标准限值,其最大值分别超标3.32和2.07倍.   相似文献   

12.
Surface sediment samples collected from twenty-one sites of Yellow River Estuary and Yangtze River Estuary were determined for sixteen priority polycyclic aromatic hydrocarbons (PAHs) by isotope dilution GC-MS method. The total PAH contents varied from 10.8 to 252 ng/g in Yellow River Estuary sediment, and from 84.6 to 620 ng/g in Yangtze River Estuary sediment. The mean total PAH content of Yangtze River Estuary was approximately twofold higher than that of Yellow River Estuary. The main reasons for the di erence may be the rapid industrial development and high population along Yangtze River and high silt content of Yellow River Estuary. The evaluation of PAH sources suggested that PAHs in two estuaries sediments estuaries were derived primarily from combustion sources, but minor amounts of PAHs were derived from petroleum source in Yellow River Estuary. PAHs may be primary introduced to Yellow River Estuary via dry/wet deposition, wastewater e uents, and accidental oil spills, and Yangtze River Estuary is more prone to be a ected by wastewater discharge.  相似文献   

13.
长江口区域水体半挥发性有机污染物健康风险评价   总被引:22,自引:10,他引:12  
近年来长江口区域水体的有机物污染日渐严重.主要应用美国环境保护局(USEPA)的健康风险评价方法,并对其进行了一定的修改和补充,对长江口区域水体半挥发性有机污染物的健康风险进行了初步评价.结果表明:长江口区域水体半挥发性有机污染物的非致癌风险指数均小于1,其中单环芳香族类的非致癌风险值均在10-3数量级,卤代烃类的风险值在10-4数量级,均偏高于其他类物质;各类物质的致癌风险指数均在10-4数量级以下,其中六氯苯、双(2-氯乙基)醚和咔唑的风险指数相对较高,在10-5数量级.根据USEPA的建议值,初步认为目前长江口区域水体中单一半挥发性有机污染物不会对人体产生明显的健康危害.由于缺少相关的研究资料,因此各种有机污染物的联合健康效应评价尚无法进行.   相似文献   

14.
参照美国EPA8000系列方法及质量保证和质量控制,对江三角洲河流和珠江口的表层沉积物中多环芳烃和有机氯农药进行了分析。结果表明,珠江广州河段及澳门内港的PAHs和有机氯农药含量最高;进入狮子洋水道后,污染物的含量显著减少;珠江口西岩污染物的含量高于东岸;西江表层沉积物中优控制PAHs的含量相对较高。对多环芳烃的来源也作了初步探讨。  相似文献   

15.
为了全面评价三峡库区土壤多环芳烃(polycyclic aromatic hydrocarbons,PAHs)环境行为,以香溪河库湾不同淹没类型土壤[消落带上缘(>175 m)、消落带(145~175 m)和沉积物(<145 m)]为研究对象,通过高效液相色谱检测方法,分析3个区域土壤16种美国环保署优先控制的PAHs含量.结果表明,香溪河库湾土壤PAHs总量表现为消落带上缘>消落带>沉积物,沉积物PAHs以3环和4环为主,而消落带及其上缘土壤PAHs以4环和5环为主,其中消落带土壤PAHs变异系数相对最高,与其它两个区域PAHs组成之间的相关性相对较弱.各区域土壤PAHs分布呈现季节差异,夏季和冬季土壤PAHs含量相对较高,主要与库区各季节居民能源消费类型有关;空间分布特征表现为,沉积物PAHs空间分布整体较为均匀,而消落带及其上缘土壤PAHs在峡口镇和长江入江口处PAHs含量相对较高,主要与空间水平上各样点频繁的人类活动有关.PAHs异构体比值法分析表明,香溪河库湾各区域土壤PAHs来源具有季节性差异,化石燃料和生物质的不完全燃烧是消落带土壤PAHs的主要来源;终身致癌风险评价模型分析表明,土壤PAHs通过误食和皮肤接触暴露途径对人体健康产生潜在致癌风险,并且消落带上缘土壤PAHs致癌风险相对较大.研究结果扩展了对香溪河库湾土壤PAHs环境行为的认识,为三峡库区香溪河库湾土壤PAHs污染防治提供有益参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号