首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用全国地球化学基准计划在滇黔桂岩溶区35个点位采集的70件河漫滩表、深层土壤样品,分析了As、Cd、Cr、Cu、Hg、Ni、Pb和Zn 8种重金属元素含量特征,探究了重金属来源、污染状况及潜在生态风险.结果表明,8种重金属元素含量大部分均高于全国土壤背景值,在滇东南地区含量最高,桂西北地区最低.表层土壤Cd、Hg明显富集,As、Cr、Cu、Ni与深层土壤含量相当;As、Cd、Hg、Pb、Zn在农田、菜地中明显高于深层土壤,Cr、Cu和Ni在各类土地中与深层土壤相当.因子分析结果显示,表层土壤中Cd、Cr、Cu、Ni受地质背景控制,As、Pb、Zn既与地质背景有关,也受人为活动影响,Hg受人为活动影响较严重;深层土壤中Cd、Cr、Cu、Ni、Cr、Zn继承了区域母岩特征,As、Hg和Pb受地质背景和人为活动双重影响.地累积指数法和富集因子法污染评价结果表明,研究区河漫滩表层土壤中Cd、Hg污染较重,As、Cr、Cu、Ni、Pb、Zn大部分为轻度污染或无污染.各重金属潜在生态风险指数高低顺序依次为Hg > Cd > As > Cu > Ni > Pb > Cr > Zn,Cd和Hg的生态风险指数之和占综合指数的82.43%,生态风险最高;滇东南地区重金属潜在风险综合指数最高,具重度生态风险.  相似文献   

2.
三峡澎溪河回水区消落带岸边土壤重金属污染分布特征   总被引:6,自引:0,他引:6  
在对澎溪河回水区消落带及岸边土样品中重金属含量和样品理化性质测定的基础上,重点分析了该区域内重金属分布特征,并对重金属元素间的相关性展开研究.同时,应用地累积指数对研究区域污染现状进行评价.结果表明,消落带样品中Cu、Cr、Zn、As、Cd、Pb、Hg的平均含量分别为28.17、59.21、108.98、4.77、2.02、28.85、0.52mg·kg-1;岸边土样品中重金属的含量范围分别为22.32、54.90、98.05、7.87、0.77、22.97、0.94mg·kg-1.Cd是三峡库区污染较严重的重金属元素.相关性分析表明:在消落带样品中,Cd与Zn显著相关(p〈0.01),Pb、Hg和Cu、As都存在显著的正相关关系,说明这4种重金属元素在接受外来污染时可能存在相似性;在岸边土样品中,Cd与Zn、Cr与Cu、As与Hg显著相关(p〈0.01),Pb与Cu、Cr、Zn、Cd显著正相关,表明这几种重金属可能有着相似的来源.消落带样品重金属污染程度评价结果为:Cd〉Hg〉Zn〉Pb〉Cu〉As〉Cr,岸边土样品重金属污染程度评价结果为:Hg〉Cd〉Zn〉As〉Pb〉Cu〉Cr,Cd和Hg在个别站位达到了严重污染水平.消落带土壤受人为扰动后会成为水体的二次污染源,因此,消落带土壤重金属对水体的潜在影响不容忽视.  相似文献   

3.
石化园区周边农田土壤重金属污染分析与评价   总被引:16,自引:1,他引:15  
以某化工园区附近300km2区域为研究区,采用辐射状精确布点,采集表层土壤样品共计200个,以该区土壤环境自然背景值和《国家土壤环境质量标准》(GB15618-1995)二级标准值为评价标准,对土壤重金属Cd、Cr、Cu、Ni、Pb、Zn、Hg和As的污染进行了分析评价.结果表明,以自然背景值为评价标准,研究区表层土壤中Cd、Hg、Cu和Pb平均含量超过自然背景值,其中,Cd为首要污染因子;以国标二级标准为评价标准,除Cd和Hg以外的6种重金属的单项污染指数平均值均小于1,Cd仍是研究区表层土壤重金属污染的主要因子.化工区西北和西南方向农田土壤重金属含量变化表明,随着与化工区距离的增加,农田土壤中Cd、Cr、Cu、Ni、Pb、Zn和Hg的含量呈显著下降趋势.采用相关分析和主成分分析研究区内土壤中重金属的来源,主因子1和主因子2的贡献率分别为65.23%、19.93%,前者反映土壤中重金属Cd、Cr、Cu、Pb、Zn和Hg积累的差异,并主要与人类活动有关;后者体现了Ni和As的变化,主要与成土母质有关.  相似文献   

4.
石家庄市大气降尘重金属元素来源分析   总被引:3,自引:2,他引:1  
在石家庄市采集了51件大气降尘样品,对其重金属来源进行了解析。主要针对样品所含有的As、Cd、Cr、Cu、Hg、Ni、Pb、Zn等8种重金属元素,进行相关性、富集因子及主成分分析。通过分析表明Pb与Cr、As、Hg、Ni相关性明显,Cr元素主要来源于土壤颗粒,As、Zn、Pb、Ni、Cu元素可能叠加工业污染,Hg、Cd污染严重,Pb元素主要受到燃煤和交通污染。重金属元素的空间分布表明市区含量低,二环外含量高,受交通和废气污染较重。  相似文献   

5.
万庄金矿田土壤重金属的垂直分布及形态研究   总被引:3,自引:0,他引:3  
利用等离子体发射光谱法、原子荧光光谱法等研究了北京水源涵养区上游万庄金矿田4个土壤剖面样品中的Cu、Zn、Ni、Pb、Cd、Cr、Hg和As共8种重金属元素在剖面上的分布特征,以及Cu、Zn、Pb、Cd、Cr、Ni元素的形态分布特征,并对重金属元素污染现状进行了评价。结果表明部分重金属元素在土壤表层有明显的富集现象,Cd、As、Pb、Zn、Cu、Hg 6种重金属基本都随深度的增加,含量大体呈现逐渐减小的趋势,Cr、Ni有较相似的迁移和富集规律;相关性分析发现Zn、Ni、Cd、Cr、和As的相关性显著可能具有同源性。形态分析可知重金属Zn、Cd的迁移能力相对较高。地累积指数评价结果可见,土壤中Pb、As、Cd环境生态污染较严重。  相似文献   

6.
时运红  李明远  李波  魏杰  吴光学 《海洋环境科学》2017,36(2):186-191, 208
根据1992~2013年间深圳湾沉积物的监测数据,重点分析了重金属砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、铅(Pb)、汞(Hg)和锌(Zn)含量、来源、相关性、污染程度和生态风险等污染状况。深圳湾沉积物中重金属含量存在明显的时空分布特征。1992~2013年间,深圳湾尤其是近岸海域,沉积物重金属含量的基本变化趋势为先增加后下降,重金属含量在2000~2009年间相对较高;Cd、Cr、Cu、Pb、Hg和Zn的含量从湾内到湾口逐渐降低。重金属Cu、Pb、Zn和As的富集因子指数较高,说明这4种重金属主要来自人类活动。Cd、Cr、Cu、Pb和Zn之间存在明显的相关性,具有相似污染途径和迁移过程。深圳湾底泥中重金属Pb、Zn和Cu属于轻微污染程度,其他重金属为无污染程度。深圳湾沉积物重金属的生态危害程度为轻微生态风险,重金属中Hg的生态风险指数最高,As和Cd次之。  相似文献   

7.
运用电感耦合等离子体原子发射光谱法测定南极长城站所在的菲尔德斯半岛50个陆域表层土壤样品中8种重金属(Cr、Ni、Cu、Zn、As、Cd、Hg、Pb)的含量(mg/kg):Cr(4.21~42.13),Ni(6.37~29.01),Cu(28.12~165.32),Zn(14.32~102.16),As(0.28~30.83),Cd(0.01~0.88),Hg(0.005~0.214),Pb(0.10~2.80)。运用统计学方法中的相对累计频率分析方法计算了这些重金属元素的环境地球化学基线值(mg/kg):Cr(6.51),Ni(13.81),Cu(81.62),Zn(36.40),As(1.54),Cd(0.09),Hg(0.019),Pb(0.65)。运用主成分分析方法来识别重金属的影响因素,表明菲尔德斯半岛陆域表层土壤重金属元素Cd、Pb、Hg、As、Cr的分布可能受到人为污染影响。  相似文献   

8.
天山北坡经济带土壤重金属来源及污染评价   总被引:1,自引:0,他引:1  
为定量识别与评价天山北坡经济带中奇台、吉木萨尔、阜康等地区土壤重金属来源与生态风险,对该区域171个表层土壤中Zn、Cu、Cr、Pb、Hg、As和Cd7种常见重金属的含量进行测定.运用统计学方法、主成分分析、正定矩阵因子分解(PMF)与潜在生态风险指数进行重金属污染程度评价以及来源分析.结果表明,研究区土壤Zn、Cu与Cr之外,Pb、Hg、As和Cd分别超过了新疆土壤背景值4.1、2.0、8.0和48.0倍;与国家土壤重金属风险筛选值相比,Zn、Cr和Hg浓度在安全范围内,Cu与Pb有少部分样点污染较严重,超出筛选值,As与Cd平均值分别超出筛选值的3.09倍与19.17倍.污染来源分析结果显示研究区土壤中的重金属元素主要来自于燃煤源、交通运输、大气降尘、农工业排放和自然因素.生态风险评价结果分析表明,Zn、Cu、Cr和Pb处于轻微风险状态;Cd处于极高风险水平;73.68%的Hg处于中等风险,18.71%处于高风险;43.86%的As生态风险处于中等风险,51.46%处于高风险.综合潜在生态指数介于472~2575.69,Cd对综合潜在生态指数贡献率达到了89.24%,其次是As与Hg,表明研究区Cd对土壤生态环境危害很大,As与Hg也需要特别引起重视.  相似文献   

9.
南阳盆地东部山区土壤重金属分布特征及生态风险评价   总被引:6,自引:6,他引:0  
赖书雅  董秋瑶  宋超  杨振京 《环境科学》2021,42(11):5500-5509
通过分析南阳盆地东部山区表层土壤(0~20 cm)样品的As、Hg、Cd、Cr、Pb、Zn、Ni和Cu等8种重金属含量和pH值,对土壤重金属的空间分布特征、污染程度和生态风险进行研究,并对重金属的来源进行分析.结果表明,研究区内土壤Cd、Cu、Cr、Ni、Pb、Zn和As含量相比于土壤污染风险筛选值存在不同程度的超标.土壤重金属空间分布呈面状和岛状分布.含量高值区主要分布在研究区南部,且与矿区分布相吻合.除了少数样点的土壤以外,大部分样点未受到污染,Cd的污染最为严重.As、Cr、Pb、Zn、Ni和Cu在几乎全部地区的潜在生态风险系数为轻微风险等级,Cd和Hg的潜在生态风险系数为中等风险等级占比最高.研究区综合土壤重金属潜在很强和强生态风险指数占比较高,分别为58.93%和37.66%.土壤Hg、Cd和Pb主要受到矿产开采等人类活动的影响,As主要受到研究区地质背景的影响,Zn、Ni、Cr和Cu同时受到人类活动和地质背景的影响.研究区矿产资源的开采是造成土壤污染及生态风险的主要原因.  相似文献   

10.
以滇西重金属地质高背景区为研究区,系统采集了4193件表层土壤样品,分析测试了As、Cd、Cr、Cu、Hg、Ni、Pb和Zn 8种重金属元素的含量,综合运用相关分析、主成分分析和单因素方差分析等经典统计方法探讨了土壤重金属来源和土壤重金属含量与成土母质、土地利用方式之间的关系,并利用地统计方法对重金属的空间分布特征进行了分析.结果表明:①研究区8种重金属含量平均值均超过全国土壤背景值,但是低于农用地污染风险筛选值;与云南省土壤背景值相比,As、Cd、Cu、Ni、Pb和Zn含量平均值与云南省背景值相当,Hg和Cr的平均含量分别是其背景值的2.35和1.60倍,土壤重金属存在不同程度累积现象.②Cr、Cu和Ni主要受成土母质的控制;Cd、Zn和Pb主要受人类活动影响,人为来源主要为铅锌矿开采选冶、交通运输和煤炭燃烧,Cd、Zn在一定程度上受成土母质的影响;As和Hg以人为来源为主,受汞矿采选、农业活动及煤炭燃烧的影响.③不同成土母质和土地利用方式的土壤中重金属含量差异显著.Cd、Cr、Cu、Hg和Ni在沉积岩母质区土壤中平均含量最高;草地中As、Cd、Cr、Cu、Hg、Ni、Zn平均含量最高.④Cu、Ni、Cr高值区与沉积岩母质区及区内分布的铜矿和铁矿空间耦合性良好;Pb、Cd和Zn的高值区与区内的铅锌矿分布范围基本一致;As和Hg高值区与区内汞矿等热液型金属矿的分布具有较高的空间一致性,在人类活动密集地区也呈高背景分布.  相似文献   

11.
为了解我国主要湖泊沉积物中重金属的污染特征,通过搜集整理已公开发表的文献资料数据,分析了我国31个主要湖泊表层沉积物中As、Cd、Cr、Cu、Hg、Ni、Pb和Zn 8种重金属含量的平均值及其分布特征,并运用地累积指数法、潜在生态风险指数法对其污染程度进行评价。结果显示:我国31个湖泊的沉积物中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn平均含量分别为16.39,0.497,6.29,36.89,0.076,35.37,99.52 mg/kg,大部分元素含量平均值的最大值分布区域较为分散。地累积指数评价结果表明:8种重金属的平均污染程度由高到低依次为Cd>Hg>Cu>Zn>As>Ni>Zn>Cr,Cd和Hg在多个湖泊沉积物中达中度到重污染。潜在生态风险指数评价结果表明:8种重金属的潜在生态风险系数从高到低依次为Cd>Hg>As>Cu>Pb>Ni>Cr>Zn。8种重金属的总地累积指数和综合潜在生态风险具有显著的地域差异(P0.05),表明我国主要湖泊具有各自不同的重金属污染特征。  相似文献   

12.
洪泽湖表层沉积物重金属分布特征及其风险评价   总被引:28,自引:10,他引:18  
余辉  张文斌  余建平 《环境科学》2011,32(2):437-444
为了揭示洪泽湖表层沉积物重金属的空间分布特征,用电感耦合等离子发射光谱法和原子荧光法测定了10个点位的重金属元素含量,分析了其空间分布特性,并评价了其潜在生态风险.洪泽湖表层沉积物中Cu、Zn、Pb、Cd、Cr、Hg和As平均含量分别为34.99、72.44、18.82、3.24、57.59、0.07和23.67 mg...  相似文献   

13.
采集了华南四座固体废物综合处理产业园周边表层土壤样品,并分析各样品中Cd、Pb、Hg、As、Cr、Cu、Ni、Zn和Co等9种重金属以及氟化物的含量,研究了重金属和氟化物的含量水平、空间分布及来源构成.结果表明,研究范围内表层土壤重金属和氟化物含量均值范围分别为Cd(0.165~1.161mg/kg)、Pb(37.8~60.7mg/kg)、Hg(0.041~0.103mg/kg)、As(3.6~26.2mg/kg)、Cr(26.4~67.7mg/kg)、Cu(19.1~54.6mg/kg)、Ni(10.4~26.8mg/kg)、Zn(70.8~109.1mg/kg)、Co(5.51~18.69mg/kg)、F(349.1~618.1mg/kg).除四座园区周边表层土壤的Cd含量超出背景值1.9~19.7倍以及RFH周边表层土壤的As含量超出背景值1.9倍外,其余指标的含量与背景值相差不大.综合空间分布特征分析和主成分分析的结果,可以将9种重金属和氟化物分为2个大类.Cr、Ni、Cu、Co、Zn的分布特征极为相似,且相互之间有极显著相关性,结合聚类分析和主成分分析结果,其来源主要为土壤母质;Hg、Cd、Pb、As和F的与土壤母质和多种人类活动污染有关.采用各固体废物焚烧设施累积排放量和污染源周边土壤背景总量对比,构建了各污染源的指纹谱,研究结果显示Hg、Cd、Pb、As和F可以作为固体废物综合处理产业园焚烧烟气污染源的指纹谱备选因子.  相似文献   

14.
李晓艳  吴超 《环境工程》2017,35(5):172-176
为了解有色金属矿区土壤重金属形态及pH值对其迁移的影响,选取对土壤环境影响较大的Hg、Pb、Zn、Cr、Cd、Cu元素进行研究。采用欧共体参比司的三步连续提取法研究了某铅锌矿区周边农田10个土壤样品中重金属的形态分布,根据重金属形态中酸可提取态重金属的百分比,可得6种重金属的迁移能力大小顺序为Cd>Zn>Cr>Cu>Pb>Hg;用2.3、4.1、5.6、7.2四个不同pH值的淋滤液淋溶尾砂矿柱50 d,检测数据显示,酸度的提高可以显著促进尾矿砂中重金属(Pb、Zn、Cu和Cd)的溶出;除Zn元素外,其他元素在50 d内的溶出量均随时间的推移而降低。根据不同检测时间段内淋溶液溶浸出的重金属元素含量分析可知,重金属对酸性淋滤的敏感程度顺序为Cu>Pb>Zn>Cd。综合分析得出该农田重金属污染严重程度顺序为Zn>Cd>Pb>Cu>Hg>Cr。  相似文献   

15.
采用地质累积指数和污染程度分析方法,结合MapGIS空间分析技术,对宜宾市翠屏区宋家乡项目区土地质量进行系统的环境地球化学质量评价,重点对调查区的重金属元素(As、Hg、Cd、Cr、Zn、Cu、Pb、Ni)情况进行土壤质量评价。结果显示,宋家乡研究区土壤中存在不同程度的Hg、Cd、Cr、Zn、Pb、Ni和Cu重金属超标,主要集中在洋坪村、丘陵村和大地村,而大地村的镉超标较为严重,整个研究区砷没有出现污染。为此,结合实际查明造成重金属污染的原因,为该区土壤资源、环境评价和农业经济发展规划提供实用的地球化学信息。  相似文献   

16.
珠江下游河段沉积物中重金属含量及污染评价   总被引:17,自引:5,他引:12  
为了解珠江下游出海河道沉积物中重金属含量及各污染物的潜在生态危害程度,用电感耦合等离子质谱法和原子荧光法测定了21个样点沉积物中13种元素的总量,及对底泥中主要重金属污染状况和潜在生态风险进行了评价.结果表明,珠江下游河道总Fe、总Mn含量分别为41 658.73 mg.kg-1和1 104.73 mg.kg-1,微量元素Cr、Co、Ni、Cu、Zn、As、Se、Cd、Sb、Pb和Hg的平均值分别为86.62、18.18、54.10、80.20、543.60、119.55、4.28、10.60、20.26、104.58和0.520 mg.kg-1,地积累指数评价结果显示,表层沉积物重金属污染程度顺序为:Cd〉As≈Zn〉Hg〉Pb≈Cu≈Cr,潜在生态风险程度大小顺序:Cd〉Hg〉As〉Cu〉Pb〉Zn〉Cr,Cd是该水域污染和潜在生态风险最大的元素,单项潜在生态风险与区域综合潜在生态风险一致.珠江下游河道底泥Cd、Hg和Pb污染受输入影响北江大于西江和东江.聚类分析结果表明,研究站位潜在生态风险可分5类,基本反映了站位分布及沉积物环境污染变化特征.总体而言,重金属污染和生态风险程度较高的江段有陈村-沙湾段、陈村-顺德港段及外海-虎跳门段,北江及相关河道污染程度和潜在生态风险指数高于区域其他江段.  相似文献   

17.
对广西河池铅锑矿冶炼区土壤重金属污染特征进行了研究。结果表明:冶炼区土壤受到较高含量的Sb、Pb污染,As、Zn和Cu也有一定程度的污染。土壤中的w(Sb)和W(As)分别为155~30439mg/kg和27~17611mg/kg。冶炼区土壤中的重金属元素的含量与距离冶炼厂的距离有密切关系,不同重金属的衰减呈现不同的特点。研究区内三种不同类型土壤中的重金属元素呈现不同的分布特征:三种不同土壤类型Pb、As、Cu、Sb的含量关系为:水稻田>菜地>荒地。元素相关性分析表明Sb、Pb、As、Cu、Cd为密切相关的一组元素,可判定它们都与冶炼厂排放密切相关。  相似文献   

18.
The 360 feed and manure samples were collected from 150 animal farms in Jiangsu Province, China and analyzed for heavy metals. Concentrations of Zn and Cu in animal feeds were 15.9-2041.8 and undetected-392.1 mg/kg respectively, while Hg, As, Pb, Cd, and Cr in all feeds were below 10 mg/kg. Concentrations of Cu, Zn, and Cr in animal manures were 8.4-1726, 39.5-11379, and 1.0-1602 mg/kg respectively, while As, Cd, Hg, and Pb were 〈 10 mg/kg. The concentration of Cu, Zn, As and Cr in animal feed and manure were positively correlated (p 〈 0.001), but the Cd, Hg, and Pb were not statistically correlated between the feed and the manure. Concentrations of Cu and Zn were highest in pig feed and manure, followed by poultry and dairy feeds and manures. During 1990- 2008, Cu, Zn, As, Cr, Cd contents increased by 771%, 410%, 420%, 220%, and 63% in pig manure, 212%, 95%, 200%, 791%, and -63% in dairy manure, and 181%, 197%, 1500%, 261, and 196% in poultry manure. Most of the increases occurred from 2002 to 2008, which reflects the extensive use of feed additives after 2002. In contrast, Pb and Hg in manures continuously decreased from 1990 to 2008. The results suggest that the heavy metal contents in animal manure have been greatly increased over 18 years and the contribution of manures to soil should be considered.  相似文献   

19.
为进一步摸清青海湖流域河流生态系统重金属(Zn、Cu、Pb、Hg、Ni、As、Cd和Cr)的污染状况,通过沿青海湖流域主要河流上、中、下游采集河流水体、河岸土壤及河岸植物样品,对样品中的重金属含量进行测定,并分析重金属的来源、污染状况和潜在生态风险.结果表明:①青海湖流域各介质中重金属从上游到下游均呈明显的累积效应,重金属含量均表现为河岸土壤>河岸植物>河流水体.河流下游水体中ρ(Pb)、ρ(Zn)和ρ(Cd)的平均值分别为11.17、61.22和1.13 μg/L,符合GB 3838—2002《地表水环境质量标准》中Ⅱ类水质要求;ρ(Hg)为0.06~0.49 μg/L,符合GB 3838—2002中Ⅱ类或Ⅲ类水质要求.河流下游河岸土壤中w(As)、w(Cd)和w(Hg)的平均值分别为65.61、0.33和0.20 mg/kg,均大幅超过青海湖流域相应环境背景值,但是w(Pb)在下游仅略微超过相应环境背景值.河岸下游植物中w(Ni)、w(Cu)、w(As)和w(Hg)的平均值分别为2.81、17.35、2.20和0.10 mg/kg,均高于《饲料工业标准汇编(下册)(第四版)》中风干草-牧草中重金属标准限值,但在中、上游均符合该标准要求.②Pearson相关分析、主成分分析和富集系数结果表明,河流水体、河岸土壤及河岸植物中Zn、Cu、Ni、Pb、Cr含量之间具有较强的相关性,主要受城镇生活、交通运输及岩石母质风化的影响;Hg、Cd、As含量之间具有较强的相关性,主要受流域旅游交通、农业生产活动和成土母质的影响.③潜在生态风险评价结果显示,河流水体、河岸土壤及河岸植物中Cu、Ni、Cr、Pb和Zn等单一重金属元素的潜在生态风险系数(Eri)均较低,Hg、Cd和As对综合潜在生态风险指数(RI)的平均贡献率分别为62.9%、18.4%和11.0%,其余5种重金属的平均贡献率仅为7.7%.因此,青海湖流域河流生态系统各介质中Hg、Cd和As的潜在生态风险较高,应给予高度重视.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号