首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
利用2013年贵阳市10个国控监测站点PM2.5和PM10全年(2013年1月1日00时-2013年12月31日23时)实时同步质量浓度监测资料,取24小时滑动平均,研究PM2.5和PM10质量浓度比值(PM2.5/PM10)的时间、空间分布特征及二者质量浓度的相关性.结果表明:2013年贵阳市PM2.5/PM10的年均值为0.64,春、夏、秋和冬季的平均值分别为0.64、0.49、0.66和0.77.PM2.5/PM10四季有较大差异,冬季比值最高,夏季最低,春、秋两季相当;由于所代表的功能区及环境位置特点不同,各监测点同时刻的PM2.5和PM10浓度值有较大差异,但PM2.5/PM10的空间分布没有明显差异;对PM2.5和PM10浓度值进行回归分析,当PM10浓度增大时,PM2.5整体呈增大趋势.  相似文献   

2.
张晖  王伯铎  丁卓  房亮亮  范晓娟 《环境工程》2013,(Z1):340-343,356
利用西安市城区2010年12月—2011年11月空气中逐日PM10浓度监测值,对西安市PM10时空分布特征进行分析,揭示了西安市PM10的动态分布规律,冬季污染浓度最高,夏季污染浓度最低。与辐射量、相对湿度和能见度呈负相关,与气压和总云量呈正相关。并对PM2.5进行了简要的讨论。  相似文献   

3.
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,不仅能够造成灰霾天气,而且会对人体健康造成重大危害。本文以广州市环境监测中心站2009年的监测数据为基础,对广州市区PM2.5的时间变化和原因进行了分析,结果表明广州市区的PM2.5冬季较高,夏季较低,最高浓度出现在10月,最低浓度出现在7月。PM2.5浓度日变化呈现出明显的双峰形;PM2.5浓度的时间变化特征与气象因素和污染源排放密切相关。  相似文献   

4.
依据2013年白龙岗站点自动监测数据,对PM2.5污染特征及手工采集的PM2.5膜中水溶性阴离子进行分析,并结合实际提出相应的防治对策。结果表明,PM2.5作为首要污染物,其分布具有季节性特征,冬季最高,夏季最低;灰霾日PM2.5、PM10、SO2和NO2具有相同的变化趋势;NO-3/SO2-4的比值表明宜昌市呈现工业污染和机动车尾气污染的复合污染特征。  相似文献   

5.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:31,自引:3,他引:31       下载免费PDF全文
 在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献   

6.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:46,自引:4,他引:46       下载免费PDF全文
在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献   

7.
获取武汉市2013年全年10个监测点PM2.5监测数据,采用数理统计方法和GIS空间分析方法分析其时间变化特征和空间分布特征。2013年武汉市城区PM2.5年均值为89.0μg/m3,清洁对照点年均值75.2μg/m3。月变化上,1-7月,浓度逐月下降至7月份达到最低;7-12月,浓度整体上升,10月份浓度上升明显以至11月份有明显回落。日变化上,上午9:00为日间浓度峰值,下午16:00达到低谷;夜间浓度高于日间浓度且夜间变化幅度较小。城区内部污染差异明显,夏季PM2.5浓度空间异质性相对冬季更强;工业区和人口集中区污染最严重,城市绿地和公园局部污染相对较轻;污染程度变化的一致性不仅与距离有关,受周边环境影响更明显。  相似文献   

8.
2013年北京市细颗粒物时空分布特征研究   总被引:1,自引:1,他引:0  
根据2013年北京市PM2.5监测数据,系统分析了北京市PM2.5污染的时空分布特征,并利用克里格插值统计了四季PM2.5不同浓度区间的国土面积。结果显示:2013年全市PM2.5年均浓度为89.5μg/m3,超过年均35μg/m3的国标1.56倍;PM2.5浓度由高到低的季节依次是冬季、春季、秋季和夏季;空间分布上PM2.5呈现明显的南北梯度分布特征;2013年PM2.5平均浓度达标对应的国土面积占比夏季最大为73%,冬季最小为22%。  相似文献   

9.
分析揭示黄河流域城市PM2.5时空分异特征,对打赢大气污染防治攻坚战,推动黄河流域空气污染跨区域协同治理机制的建立和完善,以及流域绿色高质量发展具有重要意义.本文以中国空气质量在线监测分析平台456个监测站点的PM2.5浓度监测数据为基础,运用莫兰指数和标准差椭圆方法分析黄河流域70个城市2015—2021年PM2.5的时空分异特征、演变格局,并基于皮尔逊相关系数分析法对其污染源进行解析.结果表明:(1)PM2.5浓度的月度、季节变化特征明显.月均浓度呈底部宽缓的“U”型分布,12月或1月达到最大值;冬季平均浓度最高、春秋季次之、夏季最低,冬季浓度是夏季的1.9~2.6倍;年均PM2.5浓度整体趋降,且表现为下游>中游>上游的空间分异性.(2)PM2.5的空间聚集表现为上游“低—低”集聚、下游“高—高”集聚、中游城市的空间聚集特征不显著,空间正相关集聚的城市数量以先增后减的趋势变化,负相关集聚特征的城市较少.(3)PM2.5  相似文献   

10.
根据2016-2017年日照国家基本气象站和日照市环保局所辖环境监测点气溶胶PM2.5观测数据,统计分析了2016-2017年日照市PM2.5的最小值、最大值、各月平均值、各时平均值等变化特征。结果表明,日照市2016-2017年PM2.5最小值为1μg/m3,共出现371次,各时均有出现,规律性不强;最高值为453.4μg/m3,出现在2016年12月20日凌晨3时,超过300μg/m3共出现过46次,每个时间段都出现过最高值,夜间凌晨居多;各月平均值1月最高,8月最低,冬季平均值明显高于夏季,和市环保局监测点数据分析分布规律相同,也呈双峰单谷;各时平均值9时最高,17时最低。  相似文献   

11.
我国典型城市PM_(2.5)空间分布均匀性分析   总被引:1,自引:1,他引:0  
潘本锋  汪巍  李莉娜 《环境工程》2015,33(5):109-113
随着空气质量新标准的实施,从2013年开始我国部分城市先期开展了PM2.5的例行监测,从中选取不同区域的典型城市,分析了PM2.5在环境中的分布情况。分析结果表明:典型城市PM2.5日均值相对标准偏差(RSD)范围为13%~26%,平均值为18%;我国南方城市PM2.5空间分布均匀性优于北方城市,北方城市冬、春季节PM2.5分布的均匀性较差,南方城市夏季PM2.5分布的均匀性较差;PM2.5的空间分布均匀程度与PM10接近,但明显优于其他气态污染物。综合分析认为,目前我国国家监测网内PM2.5监测点位的代表性能够满足城市空气质量监测与评价工作需要。  相似文献   

12.
根据2015年1—12月深圳市城区11站点PM_(2.5)小时浓度监测数据,探讨了深圳市PM_(2.5)浓度的时空分布特征。结果显示:监测期间深圳市城区PM_(2.5)平均浓度为29.8μg/m~3,PM_(2.5)平均浓度整体呈现出:冬季>秋季>春季>夏季的特征,PM_(2.5)质量浓度日变化整体呈现出双峰型分布,午后12:00—16:00浓度较低。空间分布上,年均浓度从东南至西北方向依次升高,梯度特征明显。PM_(2.5)浓度与PM_(10)呈高度相关,与SO_2、NO_2、CO呈显著正相关,与O_3呈实相关。相邻城市间空气污染物浓度呈现出一定的相关性,区域污染突出。建立的PM_(2.5)回归统计模型对深圳市2015年PM_(2.5)临近预报的级别准确率在70%以上,能较好地反映PM_(2.5)浓度变化趋势。  相似文献   

13.
2013年大连市区大气中臭氧日最大8小时平均值第90百分位为0.099毫克/立方米,符合二级标准(GB3095-2012)日最大8小时平均。点日最大8小时平均超标率为1.0%。春、秋两季的日最大8小时平均较大,但都符合二级标准,从月份变化看,5月的日最大8小时平均最高,12月最低,从24小时变化看,14时、15时和16时的臭氧均值最高,7时臭氧均值最低。从各点位变化看,傅家庄点位臭氧日最大8小时平均的第90百分位最高,双D港点位最低。大连市区臭氧与PM2.5和PM10的负相关性最好,相关系数均达到0.86以上,与二氧化氮、二氧化硫和一氧化碳也呈较好的负相关。  相似文献   

14.
南京大气PM10谱分布和细粒子中多环芳烃的研究   总被引:3,自引:1,他引:2  
文章使用分级采样器采集夏秋两季南京市不同功能区的大气PM10样品,运用GC-MS等方法,研究细粒子中的多环芳烃(PAHs)的分布特征和污染来源。结果表明:各功能区秋季细粒子质量浓度均大于夏季,本底区细粒子质量浓度最低,为41.7~59.0μg/m3;交通商业区浓度最高,为206.5~467.0μg/m3。各功能区PM1...  相似文献   

15.
电厂除尘设施对PM10排放特征影响研究   总被引:6,自引:5,他引:1  
易红宏  郝吉明  段雷  李兴华  郭兴明 《环境科学》2006,27(10):1921-1927
在5个不同燃煤电厂除尘器进、出口进行了现场测试,对除尘器性能以及振打时对PM10排放特征的影响进行了研究.试验系统由低压荷电捕集器(ELPI)、等速采样系统、稀释系统组成.结果表明:该试验系统可对燃煤排放的可吸入颗粒物进行在线测量,获得可吸入颗粒物的瞬时浓度、平均浓度和浓度分布,最小粒径达0.03μm,可广泛用于固定源采样;除尘器进口和出口的PM10粒数浓度均呈明显的双模态对数正态分布,峰值均分别出现在0.07~0.12μm和0.76~1.23μm;电除尘器和布袋除尘器对粗颗粒态的颗粒物去除效率均较好,最大穿透率均出现在0.1~1μm范围内,但布袋除尘器在该粒径区间的穿透率低于电除尘器,降低该区间颗粒物的穿透率有利于控制可吸入颗粒物的排放;PM10的粒数浓度主要取决于亚微米态的颗粒,针对粒数浓度而言,电除尘器对PM1和PM2.5的去除效率同样低于PM10;除尘器的运行和操作条件对PM10排放影响较大,电除尘器末电场振打清灰时,出口PM10的质量和粒数浓度均明显增加;振打时电除尘器基于粒数和质量浓度的2种除尘效率均有不同程度的下降,下降幅度最大的是PM1.  相似文献   

16.
北京市区春夏PM2.5和PM10浓度变化特征研究   总被引:2,自引:0,他引:2  
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。  相似文献   

17.
谢瑞加  侯红霞  陈永山 《环境科学》2018,39(4):1484-1492
烟花爆竹燃放是大气细颗粒物(PM2.5)来源的途径之一.以泉州城区春节期间为例,研究烟花爆竹燃放对大气细颗粒物的影响,服务大气污染的特殊污染源管理.结果表明,烟花爆竹集中燃放时段,SO2、PM10和PM2.5浓度明显升高,尤以PM2.5的升高最为显著,城区PM2.5日均浓度峰值约为年均值的4倍,涂山街点位PM2.5小时浓度峰值约为城区年均值的21倍;燃放高峰期Al、Mg、Ba、Cu、Sr等烟花爆竹的特征元素占比迅速上升,Al+、Mg+、Ba+、Cu+间的小时数浓度高度相关;监测期间泉州城区细颗粒物主要污染源是烟花爆竹燃放和生物质燃烧,贡献占总颗粒物的一半以上,燃煤和工业工艺源的比例相对较低,均低于10.0%;集中燃放时段大气细颗粒物浓度高达0.578 mg·m-3,此时的烟花源的贡献比例也提升到58.2%;污染过程分析表明PM2.5浓度与烟花源的占比、数浓度的变化趋势具有趋同性.以上结果说明烟花爆竹的集中燃放是春节期间泉州大气环境恶化的主要原因.  相似文献   

18.
2010年4月-2011年3月,对福建省厦门至泉州沿海地区大气中悬浮颗粒物(PM10)和颗粒态汞(TPM)进行为期一年的观测,结果表明其大气中PM10和TPM的浓度范围分别为6.4~426.5μg/m3和18.2~3879.4 pg/m3,PM10和TPM平均浓度分别为122.5μg/m3和947.9pg/m3。不同采样点PM10和TPM浓度的季节变化趋势稍有不同,但大致都呈冬高夏低的趋势。PM10和TPM浓度的季节变化趋势主要与气温、逆温层、降雨量等气象条件有关。同时研究分析了TPM的昼夜变化趋势,结果表明TPM浓度在春冬季主要表现为夜间浓度高于日间浓度,夏秋季则为日间浓度高于夜间浓度。  相似文献   

19.
摘要:对2006~2011年宜良县城NO2、SO2、PM10监测数据进行统计分析,认为SO2是县城的主要污染物。3种污染物年际浓度变化为:NO2、SO2下降趋势显著,PM10下降趋势不显著;季节浓度变化为:S02冬〉秋〉春〉夏,N02、PM10冬〉春〉秋〉夏,并提出防治建议。  相似文献   

20.
沈阳市大气颗粒物PM_(2.5)污染现状分析   总被引:2,自引:0,他引:2  
利用2011年1~4月沈阳市环境空气中PM2.5自动监测资料进行分析,结果表明,冬季1月和2月污染严重,日均值超标率达到50.0%~64.5%。1天中PM2.5有2个峰值,最大值出现在上午8~9时,次之出现在22时,15时浓度最低。冬季PM2.5污染严重的原因是冬季采暖燃煤量大,污染物排放量大,加之气象扩散条件差导致污染严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号