首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
董威  耿立志  费波 《环境工程》2024,(2):161-166
研究选取某典型焦化企业,针对活性挥发性有机物(VOCs)组分较多的4套生产装置,酚精制、古马隆、沥青焦和焦油萘,开展装置VOCs排放特征探究。使用苏玛罐对装置VOCs废气进行采集,并通过气相色谱-质谱联用仪(GC-MS)对106种VOCs组分进行定性定量分析,采用最大增量反应活性(MIR)计算各装置VOCs排放对大气中O3生成的贡献。结果表明:1)芳香烃、卤代烃和含氧VOCs(OVOCs)是4套装置的主要特征组分,质量分数之和为92.33%~95.38%。2)4套装置排名前10位的VOCs物种质量分数之和为90.45%~93.46%。其中,苯、丙酮、二氯甲烷、乙醇和甲苯等是焦化企业VOCs排放特征物种。3)4套装置臭氧生成潜势(OFP)值为278.73~426.95μg/m3,顺序为焦油萘装置(426.95μg/m3)>酚精制装置(410.43μg/m3)>沥青焦装置(294.36μg/m3)>古马隆装置(278.73μg/m3)。4)4...  相似文献   

2.
基于包扎法的石化乙烯装置挥发性有机物排放特征   总被引:1,自引:0,他引:1  
装置泄露是石油炼化生产过程中重要的挥发性有机物(VOCs)无组织排放源.基于动态吹扫包扎法采样和预浓缩­­-GC/MS分析方法,对我国南方某石化企业乙烯生产过程中裂解装置的压缩、分离系统及芳烃抽提装置的泄漏组件进行了VOCs排放特征研究.结果表明:烷烃(49.7%~82.4%)含量最高,其次是烯烃(3.2%~35.7%)和芳香烃(5.5%~14.4%); 2-甲基戊烷、甲基环己烷、3-甲基己烷及2,3-二甲基丁烷在整个乙烯生产中都有重要比重.乙烯和反-2-丁烯是裂解装置的重要标志,而苯和甲苯是芳烃抽提装置的重要标志;臭氧生成潜势主要来自于烯烃,尤其是乙烯的贡献率最大,占总烯烃贡献的47.0%~73.0%.参考美国环保局推荐的Method-21,计算了轻液介质阀门的排放速率,获得其泄露排放速率与泄露浓度之间的定量关系为y=3×10-7x0.993(R2=0.788).  相似文献   

3.
本文以广州市典型印刷企业为研究对象,通过对各排放环节的浓度和组分的全面统计和综合分析,深入探讨广州市该行业VOCs排放特征、环境影响及人体健康风险.结果表明,印前环节车间VOCs浓度为3.51~73.57mg/m3,印刷环节车间VOCs浓度为0.86~435.10mg/m3,印后环节车间VOCs浓度为0.05~221.93mg/m3,废气治理设施出口浓度为4.28~66.84mg/m3,处理效率为3.01%~54.90%;且VOCs物种以芳香烃类、醇醚类和酯类为主,平均臭氧生成潜势为111.09mg/m3,其中芳香烃类物质对环境影响贡献和人体健康风险较大,建议加强针对性控制.  相似文献   

4.
石油炼化无组织VOCs的排放特征及臭氧生成潜力分析   总被引:3,自引:0,他引:3  
选取我国光化学活跃的珠江三角洲地区(PRD)典型石油炼化工艺的炼油装置、化工装置和污水处理装置,采用离线和在线的多种先进仪器监测其VOCs的无组织排放特征,并采用间、对-二甲苯/苯(X/B)、甲苯/苯(T/B)、乙苯/苯(E/B)比值分析其VOCs的老化特征,采用最大增量反应活性法(MIR)、等效丙烯浓度法和OH自由基反应速率法(LOH)3种方法综合评价其VOCs的化学反应活性及臭氧生成潜势(OFP).研究发现,炼油装置区和化工装置区总挥发性有机物(TVOC)浓度早晚高,中午低;污水处理区呈双峰趋势.3个装置区无组织排放的VOCs中烷烃浓度均占比最高,同一装置区内的不同装置VOCs排放特征不同.石化企业X/B、T/B和E/B值较城区和郊区的高,化工装置区的压缩碱洗装置区(CAW)T/B值最大.石化企业VOCs的活性较城区和郊区的强,其平均OH消耗速率常数为15.22×10-12cm3/(mol·s),最大增量反应活性为4.21mol(O3)/mol(VOC).化工装置区对石化企业OFP总量的贡献最高,为84.83%;其次是污水处理区,12.95%;炼油装置区最低,为2.22%.化工装置区的CAW对石化企业OFP贡献率最高,为34.26%;污水处理区的浮选池(FT)贡献率最低,为0.36%.  相似文献   

5.
2018年8~9月,利用深圳市铁塔的11个垂直梯度平台进行了9轮挥发性有机物(VOCs)不锈钢罐采样,并应用气相色谱质谱联用仪(GC/MS)对103种VOCs组分进行定量分析,研究不同垂直高度上VOCs组分特征及对近地面臭氧(O3)生成的影响.结果表明,从地面到345m高空VOCs总体污染水平相近,在垂直梯度上变化不大;但烯烃浓度随高度上升呈现下降趋势,主要受地面天然源排放的异戊二烯主导.结合典型物种及物种对的分析发现,日间的二次生成、工业排放和光化学反应消耗是影响垂直梯度上VOCs浓度变化的主要原因.应用混合层梯度方法对VOCs通量进行计算发现,烷烃(28%)和芳香烃(23%)的通量贡献最多;二氯甲烷(1.93±0.29)mg/(m2·h)、甲苯(1.86±0.39)mg/(m2·h)具有较高的垂直通量值.结合二氧化氮(NO2)和O3垂直廓线的关系分析得出,总挥发性有机物(TVOCs)/NO2在300m以上高空达到峰值,更加有利于O3  相似文献   

6.
加油站油气处理装置是控制埋地油罐油气压力并对油气进行回收处理的装置,测试分析油气处理装置进口和出口挥发性有机物(VOCs)化学组成,利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAP),量化评估其二次污染生成贡献.结果表明:(1)油气处理装置进口和出口ρ(TVOC)分别为436~706 g·m-3和4.98~10.04 g·m-3,VOCs排放主要为烷烃(72%±4%)、含氧有机物(14%±2%)和烯烃(11%±5%).不同处理工艺VOCs排放差异较小,关键物种均为异戊烷(约25%),其次为正丁烷、异丁烷和正戊烷.(2)油气处理装置出口排放的VOCs臭氧生成系数(SR值)为2.6~3.3 g·g-1,OFP为3.5~25.6 g·m-3,其中烯烃对OFP贡献率(43%~69%)最大,其次为烷烃(20%~35%)和含氧有机物(10%~22%),OFP主要贡献物种为丁烯、顺-2-丁烯、反-2-丁烯、异戊烷和丙醛.(3)油气处理装...  相似文献   

7.
利用WRF-CMAQ模式对比有无人为氯排放的模拟试验,定量分析了不同季节人为氯排放对二次无机气溶胶和二次有机气溶胶的影响.结果表明,人为氯排放对硫酸盐的影响较小,而硝酸盐对人为氯排放较为敏感,Cl-颗粒物与HNO3、N2O5、NO3和NO2均可发生反应生成硝酸盐,同时NH3也会转化为铵盐.人为氯排放使冬、春、夏、秋季硝酸盐月均浓度分别最高增加9.8 μg/m3(34.3%)、1.5μg/m3(11.4%)、1.3μg/m3(9.1%)和2.6μg/m3(10.3%),铵盐月均浓度分别最高增加3.0μg/m3(30.7%)、0.6μg/m3(10.3%)、0.5μg/m3(6.5%)和1.1μg/m3(8.0%),冬季影响最大,夏季影响最小.人为氯排放增强了Cl原子和OH自由基对VOCs的降解作用,不同种类的SOA浓度略有上升,人为氯排放对SOA浓度影响最大约为6%.二次无机气溶胶和二次有机气溶胶的增加导致了颗粒物总量的增加,人为氯排放使冬、春、夏、秋季PM10月均浓度分别最高增加14.0μg/m3(18.3%)、2.5μg/m3(3.0%)、1.9μg/m3(2.8%)和4.5μg/m3(4.3%),PM2.5月均浓度分别最高增加15.0μg/m3(24.4%)、2.1μg/m3(3.5%)、1.2μg/m3(3.2%)和3.9μg/m3(4.4%).人为氯排放的季节性影响从大到小分别为冬、秋、春、夏季,内陆的影响比沿海大.  相似文献   

8.
为明确某石化工业区VOCs浓度特征及活性物种,利用法国Chromatotec公司生产的airmo VOC expert C2-C6和airmo VOC expert C6-C12分析仪联用系统在2018年夏季对该工业区VOCs进行连续监测.结果表明:①研究期间,石化工业区φ(TVOCs)(57种VOCs物种体积分数之和)为93.7×10-9±87.5×10-9,其中烯烃占比最高,达44.9%,当φ(TVOCs)日均值越高时烯烃占比越高.体积分数较高的物种主要为低碳烯烃、低碳烷烃、正己烷、甲苯和苯.②石化工业区φ(TVOCs)呈显著的夜高昼低变化特征,且各组分变化趋势相近,其中烯烃变幅高于其他组分.③各排放物质中对O3生成贡献较大的主要是乙烯、丙烯、顺-2-丁烯、甲苯等物质,而对二次有机气溶胶生成贡献较大的主要是甲苯、异丙苯、间/对二甲苯等物质.④通过PMF解析发现,石化工业区内催化裂化及裂解、催化重整及废水废液处理、油储设施溢散的贡献率分别为51.7%、34.8%、13.5%.⑤降低石化工业区VOCs活性可以明显降低O3超标率,若同时降低VOCs活性与φ(NOx)可更有效地降低O3超标率.研究显示,石化工业区VOCs排放强度较大,应对催化裂化及裂解等重点排放单元,以及乙烯、丙烯和甲苯等活性物质的排放进行控制,降低VOCs整体活性,并协同控制区域内NOx排放,从而减少O3污染.   相似文献   

9.
孙雪松  张蕊  王裕  聂滕 《环境科学》2023,44(2):691-698
为深入了解挥发性有机物(VOCs)对臭氧(O3)污染的影响,基于北京市2019年秋季VOCs和O3高时间分辨率在线监测数据,开展O3污染情况下VOCs浓度水平、组成变化和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(22.22±10.10)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的55.65%,其次是含氧有机物(OVOCs)和烯烃,分别占总VOCs的16.23%和8.13%.观测期间,北京市城区O3共出现3次污染过程,O3污染日和清洁日φ(VOCs)平均值分别为(26.22±12.52)×10-9和(16.37±7.19)×10-9,污染日VOCs体积分数比清洁日高60.17%.臭氧生成潜势(OFP)分析结果显示,污染日OFP为113.63μg·m-3,比清洁日增加56.55%,OVOCs和芳香烃对OFP的贡献率分别增加6.51%和1.55%,而烯烃的贡献...  相似文献   

10.
2022年8月成都和重庆呈现显著的臭氧(O3)污染差异,成都O3污染天高达20 d,重庆无O3污染天,本文从前体物排放水平和气象条件分析此差异的影响因素.结果表明:(1)成都52种挥发性有机物(VOCs)(包含26种烷烃、 16种芳香烃和10种烯烃)的总体积分数(18.8×10-9)是重庆(6.6×10-9)的2.8倍,总O3生成潜势(OFP=51.2×10-9)是重庆(25.0×10-9)的2.0倍,总·OH损耗速率(L·OH=3.9 s-1)是重庆(2.3 s-1)的1.7倍.成都OFP前3是乙烯、间/对-二甲苯和异戊二烯;重庆OFP前3是异戊二烯、乙烯和丙烯.重庆仅烯烃对O3的贡献率是60.7%,而成都烯烃和芳香烃的OFP分别是重庆的1.6倍和2.9倍.综上,成都VOCs总体积分数、大气光化学活性和O3  相似文献   

11.
为了解石化行业挥发性有机化合物(VOCs)的污染排放特征,选取惠州市石化污水处理厂及树脂生产加工车间释放的废气为调查对象,采用"冷阱富集—GC/MS"技术检测了这两类废气中VOCs的含量与组成。结果表明:石化污水处理厂主要污染物为烷烃、苯系物及烯烃等3类共64种VOCs成分,总浓度为241 mg/m~3,特征污染物为间/对二甲苯,质量分数为6.4%;树脂生产加工车间中主要污染物为烷烃、苯系物及醛类等3类共27种VOCs成分,总浓度达1235 mg/m~3,特征污染物为2-乙基-1,3-二氧戊环,质量分数为18.5%。  相似文献   

12.
运用大气挥发性有机物快速在线连续自动监测系统,于2013年和2014年的8月对南京市区大气中VOCs进行观测,结果表明,VOCs的浓度分别为51.73×10-9和77.47×10-9.利用OH消耗速率(LOH)有效评估VOCs的大气化学反应活性.烯烃和芳香烃是这2年夏季南京市大气VOCs中对LOH贡献最大的关键活性组分.用FAC法估算南京SOA生成潜势,得到2013和2014年夏季SOA浓度分别为1.95μg/m3和1.01μg/m3;烷烃和芳香烃对SOA的生成潜势分别占4.01%、94.8%和4.46%、94.57%.用PMF模型对南京VOCs进行来源解析,结果表明,2013年夏季南京大气VOCs的最大来源为燃料挥发(22.7%)、其次为天然气和液化石油气泄漏(19.5%)、石油化工业(13.5%)、汽车尾气排放(17.7%)、天然源排放(13.4%)和涂料/溶剂的使用(13.2%),而2014年夏季南京大气VOCs的最大来源为天然气和液化石油气泄漏(35.2%)、其次为石油化工业(20.6%)、不完全燃烧(20.5%)、燃料挥发(15.7%)和汽车尾气排放(8.1%).  相似文献   

13.
为探究开封市冬季大气挥发性有机物(VOCs)的污染特征及来源,基于2021年12月至2022年1月开封市生态环境局(城区)在线监测站获取的大气VOCs组分数据,阐述其VOCs污染特征和二次有机气溶胶生成潜势(SOAP),利用PMF模型解析出VOCs的来源.结果表明,冬季开封市ρ(VOCs)平均值为(104.71±48.56)μg·m-3,其质量分数最高为烷烃(37.7%),其次为卤代烃(23.5%)、芳香烃(16.8%)、 OVOCs(12.6%)、烯烃(6.9%)和炔烃(2.6%).VOCs对SOA的贡献平均值为3.18μg·m-3,其中芳香烃贡献率高达83.8%,其次为烷烃(11.5%);开封市冬季VOCs的最大人为排放来源为溶剂使用(17.9%),其次为燃料燃烧(15.9%)、工业卤代烃排放(15.8%)、机动车排放(14.7%)、有机化学工业(14.5%)和LPG排放(13.3%);溶剂使用源对SOAP的贡献率达到32.2%,其次是机动车排放(22.8%)和工业卤代烃排放(18.9%).可见,降低溶剂使用、机动车排放和工业卤代烃排放的...  相似文献   

14.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   

15.
南京北郊工业乡村混合区秋季边界层VOCs垂直分布特征   总被引:1,自引:0,他引:1  
利用2020年秋季南京北郊低对流层(0~1 000 m)VOCs探空实验数据,分析了该地区VOCs垂直廓线分布及其日变化、光化学反应性等特征.结果表明,φ(VOCs)随高度升高而降低(72.1×10-9±28.1×10-9~56.4×10-9±24.8×10-9).各高度上烷烃占比最大(68%~75%),其次为芳香烃(10%~12%)、卤代烃(10%~11%)、烯烃(3%~7%)和乙炔(2%).边界层日变化对VOCs廓线影响较大,早晚较低的边界层致使VOCs在近地面累积,而在上部体积分数较低;午后VOCs的垂直分布则较均匀.上午光化学反应性强(弱)的烯烃(烷烃)等的体积分数占比随高度升高而减小(增加),说明高层的VOCs光化学老化显著.午后VOCs各组分占比及其OFP在低对流层内垂直分布则较均匀.受周边不同来源气团影响,各高度φ(VOCs)及组分占比差异明显,工业气团在200~400 m;高度间φ(VOCs)随高度升高,芳香烃占比增大;城区气团φ(VOCs)垂直负梯度最大,近地面φ(VOCs)较高,...  相似文献   

16.
郑州市多站点大气VOCs变化特征及源解析   总被引:1,自引:1,他引:0  
于2020年7月至2021年6月,在郑州市3个城市站点和1个郊区站点开展逐月大气VOCs离线样品采样及实验室分析,探讨郑州市大气VOCs体积分数水平、组成特征、反应活性和来源贡献.结果表明,观测期间,郑州市大气φ(VOCs)为(37.50±14.30)×10-9,组分占比为:烷烃(33%)>OVOCs(24%)>卤代烃(23%)>芳香烃(8%)>烯烃(7%)>炔烃(4%)>硫化物(1%).季节变化表现为:冬季>秋季>夏季>春季,VOCs月均值在1月出现最高值,5月出现最低值,空间变化则表现为:郑州大学>市监测站>经开区管委>岗李水库.采样周期·OH消耗速率(L·OH)均值为4.24 s-1,臭氧生成潜势(OFP)均值为172.27μg·m-3,各站点和各季节L·OH和OFP贡献率前10位物种均以烯烃、 OVOCs和芳香烃为主.正交矩阵因子分解模型(PMF)结果显示,VOCs主要来源为机动车排放(28%)、溶...  相似文献   

17.
为了解天津市PM2.5-O3复合污染特征及来源,基于2017~2019年高时间分辨率PM2.5、 O3和挥发性有机物(VOCs)在线监测数据,对复合污染下天津市VOCs浓度水平、化学组成及O3和二次有机气溶胶(SOA)生成潜势来源进行分析.结果表明,2017~2019年,天津市复合污染日为34 d,分布在每年的3~9月,年度变化呈现稳中略升趋势;小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).复合污染下ρ(VOCs)为72.59μg·m-3,烷烃、芳香烃、烯烃和炔烃质量分数分别为61.51%、 20.38%、 11.54%和6.57%; VOCs中浓度较高的前20种物种的浓度均上升,其中乙烷、正丁烷、异丁烷和异戊烷等烷烃类物种质量分数上升,烯烃和炔烃类质量分数略下降,芳香烃类中的苯和1,2,3-三甲苯质量分数略升....  相似文献   

18.
张蕊  孙雪松  王裕  王飞  罗志云 《环境科学》2023,44(4):1954-1961
为深入了解臭氧(O3)污染高发季节大气挥发性有机物(VOCs)对O3生成的影响,基于北京市2019年夏季VOCs和O3高时间分辨率在线监测数据,开展VOCs变化规律、组成特征和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(25.12±10.11)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的40.41%,其次是含氧有机物(OVOCs)和烯/炔烃,分别占总VOCs的25.28%和12.90%. VOCs体积分数日变化呈双峰型,早高峰出现在06:00~08:00,烯/炔烃占比明显增加,表明机动车排放对VOCs贡献显著,而午后VOCs体积分数降低,期间OVOCs占比呈现上升趋势,下午的光化学反应和气象要素对VOCs体积分数和组成影响较大.北京市城区夏季OFP为154.64μg·m-3,贡献率较高的组分是芳香烃、 OVOCs和烯/炔烃,正己醛、乙烯和间/对-二甲苯等是关键活性物种,削减机动车、溶剂使用和餐饮源排放是北京市城区夏季控制O3  相似文献   

19.
2018年8月采集太原市大气样品,分析太原市夏季大气VOCs的污染特征,并利用最大增量反应活性系数法(MIR系数法)估算了VOCs的臭氧生成潜势(OFP).结果表明,太原市夏季大气VOCs浓度为17.36~89.60μg/m3,其中烷烃占比58.01%、芳香烃占比20.06%、烯烃占比16.52%、炔烃占比5.40%.大气VOCs浓度变化表现为明显的早晚双高峰特征,且以早高峰影响为主.OFP分析显示,烷烃、烯烃、芳香烃、炔烃分别占总OFP的19.16%、47.74%、31.75%、1.35%,C3~C5类烯烃是活性较高的物种,对O3生成贡献较大.  相似文献   

20.
利用湖北省超级站2019年10~11月的臭氧、NOx(=NO+NO2)和102种VOCs物质的小时数据分析了军运会期间臭氧污染变化;基于DSMACC箱型模式模拟不同VOCs和NOx浓度下臭氧的光化学生成敏感性;采用PMF模型对前体物VOCs进行源解析,并估算不同源类的臭氧生成潜势.结果显示,军运会保障前臭氧日最大8小时浓度(最大MDA8:219.51μg/m3)超过国家二级标准,保障期臭氧MDA8浓度(135.11μg/m3)明显下降,保障后浓度回升(140.98μg/m3).军运会保障前中期臭氧浓度的差异受气象条件影响更明显,而保障后臭氧浓度的上升主要是因为前体物浓度的大幅增加.根据DSMACC模拟的EKMA曲线,武汉市军运会期间臭氧的光化学生成主要受VOCs浓度变化的影响.进一步对VOCs进行源解析,结果显示,保障前VOCs对臭氧生成贡献较大的源类是燃烧源、石油化工和机动车,分别占23.0%、22.8%和22.5%;保障期间VOCs的主要来源是机动车(38.4%)和燃烧源(25.5%);保障后则主要是石油化工(32.6%)和燃料挥发(25.7%).三个阶段对比发现,军运会的保障方案对石油化工源减排效果明显,但对机动车和燃烧源排放的限制效果并不显著.武汉市应该更注重对燃烧、燃料挥发和机动车排放的治理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号