首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ethylenediurea(EDU)has been used as a chemical protectant against ozone(03).However,its protective effect and physiological mechanisms are still uncertain.The present study aimed to investigate the changes of foliar visible injury,physiological characteristics and emission rates of volatile organic compounds(VOCs)in one-year-old Populus alba"Berolinensis"saplings pretreated with EDU and exposed to elevated O_3(EO,120μg/m~3).The results showed that foliar visible injury symptoms under EO were significantly alleviated in plants with EDU application(p0.05).Under EO,net photosynthetic rate,the maximum photochemical efficiency of PSII and the photochemical efficiency of PSII of plants pretreated with 300 and600 mg/L EDU were similar to unexposed controls and significantly higher compared to EOstressed plants without EDU pretreatment,respectively.Malondialdehyde content was highest in EO without EDU and decreased significantly by 14.9%and 21.3%with 300 and600 mg/L EDU pretreatment,respectively.EDU pretreatment alone increased superoxide dismutase activity by 10-fold in unexposed plants with further increases of 88.4%and 37.5%in EO plants pretreated with 300 and 600 mg/L EDU pretreatment,respectively(p0.05).Abscisic acid content declined under EO relative to unexposed controls with the effect partially reversed by EDU pretreatments.Similarly,VOCs emission rate declined under EO relative to unexposed plants with a recovery of emission rate observed with 300 and 600 mg/L EDU pretreatment.These findings provided significant evidence that EDU exerted a beneficial effect and protection on the tested plants against 03 stress.  相似文献   

2.
Relative sensitivities of 30 species of common woody plants to simulated acid rain with pH values of 2.0, 2.5, 3.0, 3.5, 4.5 and control were studied. The results showed that 6 species of these plants were sensitive to simulated acid rain. The moderate included 18 species. The resistant included 6. Relative sensitivities to ambient acid rain and air pollutants and visible injury degree of 30 species of common woody plants in Chongqing City were investigated. Results showed that 6 species with foliage lesion rate at above 10 percent were sensitive, that 6 species with no lesion were resistant and that other 18 species with lesion at 10 percent below were moderate. Other 7 cities (Guiyang, Zunyi, Duyun, Changsha, Zhuzhou, Liuzhou and Guilin City) were also investigated and results were consistent with those of Chongqing City. The experimental and investigated results showed relative sensitivities and visible injury degree of woody plants to simulated acid rain were consistent with those of the woody plant  相似文献   

3.
Three ethylene diurea(EDU) concentrations(0,150 and 300 mg/L) were used to evaluate the negative impact of ozone(O3) on two cultivars of Trifolium repens L.cv.Vardan and Bundel grown under natural field conditions in a suburban area of Varanasi,India.Mean O3 concentrations varied from 30.3 to 46.6 μg/L during the experimental period.Higher photosynthetic pigments and ascorbic acid concentrations were noticed in both EDU-treated cultivars over non-EDU-treated ones,but a reverse trend was found for lipid peroxidation.Growth parameters and biomass also showed increments under EDU treatment of both cultivars.The ratio of variable fluorescence to maximum fluorescence increased significantly in Vardan but not in Bundel upon EDU treatment.Results revealed that EDU concentration of 300 mg/L was more effective to combat the oxidative stress as well as protecting plants from O3 injury symptoms.The test cultivar Vardan is relatively sensitive to O3,thereby can be used as a bioindicator of O3 pollution in areas having higher O3 concentrations.Results also indicated that Bundel has more efficient antioxidant defense system than Vardan and hence was more tolerant to O3 stress.  相似文献   

4.
Epidemiological studies have found that individuals with diabetes mellitus(DM) display an increased susceptibility for adverse cardiovascular outcomes when exposed to air pollution.This study was conducted to explore the potential mechanism linking ambient fine particles(PM2.5) and heart injury in a Type 2 DM(T2DM) animal model. The KKay mouse, an animal model of T2DM, was exposed to concentrated ambient PM2.5 or filtered air for 8 weeks via a versatile aerosol exposure and concentrator system. Simultaneously, an inhibitor of IκB kinase-2(IKK-a)(IMD-0354), which is a blocker of nuclear factor κB(NF-κB)nuclear translocation, was administrated by intracerebroventricular injection(ICV) to regulate the NF-êB pathway. The results showed that ambient PM2.5 induced the increase of, NF-êB, cyclooxygenase-2(COX-2) and mitogen activated protein kinase(MAPK) expression in cardiac tissue, and that IMD-0354 could alleviate the inflammatory injury. The results suggested that the NF-êB pathway plays an important role in mediating the PM2.5-induced cardiovascular injury in the T2DM model. Inhibiting NFκB may be a therapeutic option in air-pollution-exacerbated cardiovascular injury in diabetes mellitus.  相似文献   

5.
Inhalation of reclaimed water is known to cause lung infammation, and free endotoxins have been shown to be a major risk factor for acute exposure. Subchronic exposure has also been shown to induce infammatory responses with visible tissue damage. However,subchronic risk factors have yet to be identified, and a threshold for the protection of occupational populations during urban reuse is necessary. In this study, potential risk factors in reclaimed water were examined by subchronic exposure wit...  相似文献   

6.
A field experiment was carried out to compare the responses to ozone(O_3) in two common herbaceous plant species, Plantago major L. and Sonchus oleraceus L., by building open-top growth chambers in situ to simulate O_3stress(+ O_3, 85 ± 5 ppb, 9 hr/day for 30 days) in a lowland habitat in Inner Mongolia, Northern China. Responses to O_3 of gas exchange,chlorophyll a fluorescence, leaf pigment content, antioxidant capability, soluble protein content, membrane lipid peroxidation and dark respiration(R_d) were analyzed. Results showed that elevated O_3 exposure significantly reduced the light-saturated net photosynthesis(P_(Nsat)), stomatal conductance(g_s) and transpiration rate(E) in both species. Although non-significant interactive effect between species and O_3 on P_(Nsat) was analyzed, the reduction in P_(Nsat) in S. oleraceus might be due primarily to the higher fraction of close PSII reaction centers and impaired activities of plant mesophyll cells as evidences by decreased maximum efficiency of PSII photochemistry after dark adapted state(F_v/F_m) and unchanged intercellular CO_2concentration(C_i). Besides, biochemical analysis showed that S. oleraceus had lower antioxidant ability compared to P. major. As a result, S. oleraceus was damaged to the larger extent in terms of lipid peroxidation and visible O_3 injury, indicating that S. oleraceus was more sensitive to O_3 than P. major. Our results indicated that wild herbaceous plant species growing in a lowland habitat in sandy grassland were sensitive to O_3 stress and S. oleraceus can be considered as one of the bio-indicators for high O_3 concentration in semi-arid grassland of northern China.  相似文献   

7.
In China, the health risk from overexposure to particles is becoming an important public health concern. To investigate daily exposure characteristics to PM 2.5 with high ambient concentration in urban area, a personal exposure study was conducted for school children, and office workers in Beijing, China. For all participants (N = 114), the mean personal 24-hr exposure concentration was 102.5, 14.7, 0.093, 0.528, 0.934, 0.174 and 0.703 μg/m 3 for PM 2.5 , black carbon, Mn, Al, Ca, Pb, and Fe. Children's exposure concentrations of PM 2.5 were 4-5 times higher than those in related studies. The ambient concentration of PM 2.5 (128.5 μg/m 3 ) was significantly higher than the personal exposure concentration (P 0.05), and exceed the reference concentration (25 μg/m 3 ) of WHO air quality guideline. Good correlation relationships and significant differences were identified between ambient concentration and personal exposure concentration. The relationships indicate that the ambient concentration is the main factor influencing personal exposure concentration, but is not a good indicator of personal exposure concentration. Outdoor activities (commute mode, exposure to heating, workday or weekend travel) influenced personal exposure concentrations significantly, but the magnitude of the influence from indoor activities (exposure to cooking) was masked by the high ambient concentrations.  相似文献   

8.
Eichhornia crassipes is a hyperaccumulator of metals and has been widely used to remove metal pollutants from water, but disposal of contaminated plants is problematic.Biochar prepared from plants is commonly used to remediate soils and sequester carbon.Here, the catalytic activity of biochar prepared from plants enriched with iron was investigated as a potentially beneficial use of metal-contaminated plants.In a 30-day hydroponic experiment, E.crassipes was exposed to different concentrations of Fe(Ⅲ)(0, 4, 8, 16, 32 and 64 mg/L), and Fe-biochar(Fe-BC) was prepared by pyrolysis of the plant roots.The biochar was characterized using X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive X-ray spectrometry(EDS), Brunauer–Emmett–Teller(BET) analysis, X-ray photoelectron spectroscopy(XPS) and atomic absorption spectrometry(AAS).The original root morphology was visible and iron was present as γ-Fe_2O_3 and Fe_3O_4.The biochar enriched with Fe(Ⅲ) at 8 mg/L(8-Fe-BC) had the smallest specific surface area(SSA, 13.54 m~2/g) and the highest Fe content(27.9 mg/g).Fe-BC catalytic activity was tested in the electrocatalytic reduction of H_2O_2 using cyclic voltammetry(CV).The largest reduction current(1.82 mA/cm~2) was displayed by 8-Fe-BC, indicating the highest potential catalytic activity.We report here, for the first time, on the catalytic activity of biochar made from iron-enriched plants and demonstrate the potential for reusing metalcontaminated plants to produce a biochar catalyst.  相似文献   

9.
The experimental plants were grown in open-top chamber and exposed to 0.26 ppm of ozone for six hrs. per day from seedling stage till ripening. The results showed that the height of plants, rates of earing, flowering, grain forming, ripening and the weight/1000 kernels all declined in fumigated plants in comparison with the controls. The yield lost 76.7%. The actual actions of ozone were that it caused foliar injury and chlorophyll destruction accelerating leaf senescence, reduction of assimilation products. O3 was unfavorable injurious to transport and accumulation of substances to the grains after flowering.  相似文献   

10.
The detoxification of iron cyanide in a soil–plant system was investigated to assess the total cyanide extracted from contaminated soil and allocated in the leaf tissue of willow trees(Salix caprea). They were grown in soil containing up to 1000 mg/kg dry weight(dw) of cyanide(CN),added as ~(15)N-labeled potassium ferrocyanide and prepared with a new method for synthesis of labeled iron cyanides. CN content and ~(15)N enrichment were monitored weekly over the exposure in leaf tissue of different age. The ~(15)N enrichment in the young and old leaf tissue reached up to 15.197‰ and 9063‰, respectively; it increased significantly over the exposure and with increasing exposure concentrations(p 0.05). Although the CN accumulation in the old leaf tissue was higher, compared to the young leaf tissue(p 0.05), the ~(15)N enrichment in the two tissue types did not differ statistically. This indicates a non-uniform CN accumulation but a uniform ~(15)N allocation throughout the leaf mass. Significant differences were detected between the measured CN content and the C~(15)N content, calculated from the ~(15)N enrichment(p 0.05), revealing a significant CN fraction within the leaf tissue, which could not be detected as ionic CN. The application of labeled iron CN clearly shows that CN is detoxified during uptake by the willows. However, these results do not exclude other detoxification pathways, not related to the trees. Still, they are strongly indicative of the central role the trees played in CN removal and detoxification under the experimental conditions.  相似文献   

11.
The effects of O_3/Cl_2 disinfection on corrosion and the growth of opportunistic pathogens in drinking water distribution systems were studied using annular reactors(ARs).The corrosion process and most probable number(MPN) analysis indicated that the higher content of iron-oxidizing bacteria and iron-reducing bacteria in biofilms of the AR treated with O_3/Cl_2 induced higher Fe_3O_4 formation in corrosion scales.These corrosion scales became more stable than the ones that formed in the AR treated with Cl_2 alone.O_3/Cl_2 disinfection inhibited corrosion and iron release efficiently by changing the content of corrosion-related bacteria.Moreover,ozone disinfection inactivated or damaged the opportunistic pathogens due to its strong oxidizing properties.The damaged bacteria resulting from initial ozone treatment were inactivated by the subsequent chlorine disinfection.Compared with the AR treated with Cl_2 alone,the opportunistic pathogens M.avium and L.pneumophila were not detectable in effluents of the AR treated with O_3/Cl_2,and decreased to(4.60 ± 0.14) and(3.09 ± 0.12) log10(gene copies/g corrosion scales) in biofilms,respectively.The amoeba counts were also lower in the AR treated with O_3/Cl_2.Therefore,O_3/C_l2 disinfection can effectively control opportunistic pathogens in effluents and biofilms of an AR used as a model for a drinking water distribution system.  相似文献   

12.
The combined ecological toxicity of TiO2 nanoparticles (nano-TiO2) and heavy metals has been paid more attention. As the common pollutants in water environment, surfactants could affect the properties of nanoparticles and heavy metals, and thus further influence the combined toxicity of nano-TiO2 and heavy metals. In this study, the effects of sodium dodecyl benzene sulfonate (SDBS) and Tween 80 on the single and combined toxicities of Cd2 + and nano-TiO2 to Escherichia coli (E. coli) were examined, and the underlying influence mechanism was further discussed. The results showed both SDBS and Tween 80 enhanced the toxicity of Cd2 + to E. coli in varying degrees. The reaction of SDBS and Cd2 + could increase the outer membrane permeability and the bioavailability of Cd, while Tween 80 itself could enhance the outer membrane permeability. The combined toxicity of nano-TiO2 and Cd2 + to E. coli in absence of surfactant was antagonistic because of the adsorption of Cd2 + to nano-TiO2 particles. However, in the presence of SDBS, both SDBS and nano-TiO2 influenced the toxicity of Cd2 +, and also SDBS could adsorb to nano-TiO2 by binding to Cd2 +. The combined toxicity was reduced at Cd2 + lower than 4 mg/L and enhanced at Cd2 + higher than 4 mg/L under multiple interactions. Tween 80 enhanced the combined toxicity of nano-TiO2 and Cd2 + by increasing the outer membrane permeability. Our study firstly elucidated the effects of surfactants on the combined toxicity of nano-TiO2 and Cd2 + to bacteria, and the underlying influencing mechanism was proposed.  相似文献   

13.
The effect of K deactivation on V_2O_5/WO_3-TiO_2 and Ce-doped V_2O_5/WO_3-TiO_2 catalysts in the selective catalytic reduction(SCR) of NOxby NH_3 was studied.Ce-doped V_2O_5/WO_3-TiO_2 showed significantly higher resistance to K deactivation than V_2O_5/WO_3-TiO_2.Ce-doped V_2O_5/WO_3-TiO_2 with K/V = 4(molar ratio) showed 90% NOxconversion at 350°C,whereas in this case V_2O_5/WO_3-TiO_2 showed no activity.The fresh and K-poisoned V_2O_5/WO_3-TiO_2 and Ce-doped V_2O_5/WO_3-TiO_2 catalysts were investigated by means of in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS),NH_3-temperature progress decomposition(NH_3-TPD),X-ray photoelectron spectroscopy(XPS) and H2-temperature program reduction(H_2-TPR).The effect of Ce doping on the improving resistance to K of V_2O_5/WO_3-TiO_2 were discussed.  相似文献   

14.
Previous studies on environmental antibiotics resistance genes(ARGs) have focused on the pollution sources such as wastewater treatment plants, aquaculture and livestock farms,etc. Few of them had addressed this issue in a regional scale such as river catchment. Hence,the occurrence and abundances of 23 ARGs were investigated in surface water samples collected from 38 sites which located from the river source to estuary of the Beijiang River.Among them, 11 ARGs were frequently detected in this region and 5 ARGs(sul I, sul II, tet B,tet C, and tet W) were selected for their distribution pattern analysis. The abundances of the selected ARGs were higher in the upstream(8.70 × 10~6 copies/ng DNA) and downstream areas(3.17 × 10~6 copies/ng DNA) than those in the midstream areas(1.23 × 10~6 copies/ng DNA), which was positively correlated to the population density and number of pollution sources. Pollution sources of ARGs along the Beijiang River not only had a great impact on the abundances and diversity, but also on the distribution of specific ARGs in the water samples. Both sul I and sul II were likely originated from aquaculture farms and animal farms,tet W gene was possibly associated with the mining/metal melting industry and the electric waste disposal and tet C gene was commonly found in the area with multiple pollution sources.However, the abundance of tet B was not particularly related to anthropogenic impacts. These findings highlight the influence of pollution sources and density of population on the distribution and dissemination of ARGs at a regional scale.  相似文献   

15.
To investigate the effect of air-exposed biocathode(AEB) on the performance of singlechamber microbial fuel cell(SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95%AEB, removal rates of ammonia, total nitrogen(TN) and chemical oxygen demand(COD)reached 99.34% ± 0.11%, 99.34% ± 0.10% and 90.79% ± 0.12%, respectively. The nitrogen removal loading rates were 36.38 g N/m~3/day. Meanwhile, current density and power density obtained at 0.7 A/m3 and 104 m W/m~3 respectively. Further experiments on opencircuit(Test 2) and carbon source(Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation.  相似文献   

16.
The present investigation deals with an application of integrated sequential oxic and anoxic bioreactor(SOABR) and fluidized immobilized cell carbon oxidation(FICCO) reactor for the treatment of domestic wastewater with minimum sludge generation. The performance of integrated SOABR-FICCO system was evaluated on treating the domestic wastewater at hydraulic retention time(HRT) of 3 hr and 6 hr for 120 days at organic loading rate(OLR)of 191 ± 31 mg/(L·hr). The influent wastewater was characterized by chemical oxygen demand(COD) 573 ± 93 mg/L; biochemical oxygen demand(BOD5) 197 ± 35 mg/L and total suspended solids(TSS) 450 ± 136 mg/L. The integrated SOABR-FICCO reactors have established a significant removal of COD by 94% ± 1%, BOD5 by 95% ± 0.6% and TSS by 95% ± 4% with treated domestic wastewater characteristics COD 33 ± 5 mg/L; BOD59 ± 0.8 mg/L and TSS 17 ± 9 mg/L under continuous mode of operation for 120 days. The mass of dry sludge generated from SOABR-FICCO system was 22.9 g/m~3. The sludge volume index of sludge formed in the SOABR reactor was 32 mL/g and in FICCO reactor it was 46 mL/g. The sludge formed in SOABR and FICCO reactor was characterized by TGA, DSC and SEM analysis. Overall, the results demonstrated that the integrated SOABR-FICCO reactors substantially removed the pollution parameters from domestic wastewater with minimum sludge production.  相似文献   

17.
Silver nanoparticles with average diameter of 10 ± 3 nm were synthesized within the sieves of poly(N-isopropylacrylamide-2-hydroxyethylmethacrylate-acrylic acid)(p(NIPAAm-HEMA-AAc))polymer microgels. Free radial emulsion polymerization was employed for synthesis of p(NIPAAm-HEMA-AAc) polymer microgels. Silver nanoparticles were introduced within the microgels sphere by in situ reduction method. Microgels and hybrid microgels were characterized by Fourier transform infrared spectroscopy, ultra violet-visible spectroscopy,transmission electron microscopy and dynamic light scattering measurements. Catalytic activity of Ag-p(NIPAAm-HEMA-AAc) hybrid microgels was studied using catalytic reduction of 4-nitrophenol(4-NP) as a model reaction in aqueous media. The influence of sodium borohydride(Na BH4) concentration, catalyst dose and 4-NP concentration on catalytic reduction of 4-NP was investigated. A linear relationship was found between catalyst dose and apparent rate constant(kapp). The mechanism of catalysis by hybrid microgels was explored for further development in this area. The deep analysis of catalytic process reveals that the unique combination of NIPAAm, HEMA and AAc does not only stabilize silver nanoparticles in polymer network but it also enhances the mass transport of hydrophilic substrate like 4-NP from outside to inside the polymer network.  相似文献   

18.
Aeolian dust particles arising from arid and semiarid zones are known to carry microbes by air currents. The effect of wind-borne bacteria on atmospheric bacterial population at various downwind distances from the dust source regions must be clarified, but has not yet been reported. This study monitored the bacterial abundance and community composition in outdoor aerosol samples in Beijing, China, which is close to the Asian dust source regions, and compared them with the results obtained in a distant region(Osaka, Japan).The Asian dust collected in Beijing contained(4 ± 3) × 10~4 bacterial cells/m~3, approximately~4 times higher than in Osaka. On 15 April 2015, Beijing experienced severe Asian dust events with a 1000-fold increase in bacterial abundance, relative to non-Asian dust days. Dominant bacterial phyla and classes in Asian dust collected in Beijing were Actinobacteria, Bacilli and Acidobacteria, and the bacterial community composition varied more widely than in Osaka.The bacterial community compositions differed between the Beijing and Osaka dusts, even for the same Asian dust events. These results indicated that aerosol bacterial communities nearer the dust source are more affected by eolian dust than their distant counterparts.  相似文献   

19.
The projected increase of atmospheric CO2 concentration [CO2] is expected to increase yield of agricultural C3 crops, but little is known about effects of [CO2] on lodging that can reduce yield. This study examined the interaction between [CO2] and nitrogen (N) fertilization on the lodging of rice (Oryza sativa L.) using free-air CO2 enrichment (FACE) systems installed in paddy fields at Shizukuishi, Iwate, Japan (39°38′N, 140°57′E). Rice plants were grown under two levels of [CO2] (ambient = 365 μmol mol−1; elevated [CO2] = 548 μmol mol−1) and three N fertilization regimes: a single initial basal application of controlled-release urea (8 g N m−2, CRN), split fertilization with a standard amount of ammonium sulfate (9 g N m−2, MN), and ample N (15 g N m−2, HN). Lodging score (six ranks at 18° intervals, with larger scores indicating greater bending), yield, and yield components were measured at maturity. The lodging score was significantly higher under HN than under CRN and MN, but lodging was alleviated by elevated [CO2] under HN. This alleviation was associated with the shortened and thickened lower internodes, but was not associated with a change in the plant's mass moment around the culm base. A positively significant correlation between lodging score and ripening percentage indicated that ripening percentage decreased by 4.5% per one-unit increase in lodging score. These findings will be useful to develop functional algorithm that can be incorporated into mechanistic crop models to predict rice production more accurately in a changing climate and with different cultural practices.  相似文献   

20.
The greenhouse gas emissions from agricultural systems contribute significantly to the national budgets for most countries in Europe. Measurement techniques that can identify and quantify emissions are essential in order to improve the selection process of emission reduction options and to enable quantification of the effect of such options. Fast box emission measurements and mobile plume measurements were used to evaluate greenhouse gas emissions from farm sites. The box measurement technique was used to evaluate emissions from farmyard manure and several other potential source areas within the farm. Significant (up to 250 g CH4 m−2 day−1and 0.4 g N2O m−2 day−1) emissions from ditches close to stables on the farm site were found.Plume emission measurements from individual manure storages were performed at three sites. For a manure storage with 1200 m3 dairy slurry in Wageningen emission factors of 11 ± 5 g CH4 m−3 manure day−1 and 14 ± 8 mg N2O m−3 manure day−1 were obtained in February 2002.Mobile plume measurements were carried out during 4 days at distances between 30 and 300 m downwind of 20 different farms. Total farm emissions levels ranged from 14 to 95 kg CH4 day−1 for these sites. Expressed as emission per animal the levels were 0.7 ± 0.4 kg CH4 animal−1 day−1 for conventional farms. For three farms that used straw bedding for the animals1.4 ± 0.2 kg CH4 animal−1 day−1 was obtained. These factors include both respired methane and emission from manure in the stable and the outside storages.For a subset of these farms the CH4 emission was compared with monthly averaged model emission calculations using FarmGHG. This model calculates imports, exports and flows of all products through the internal chains on the farm using daily time steps. The fit of modelled versus measured data has a slope of 0.97 but r2 = 0.27. Measurements and model emission estimates agree well on average, for large farms within 30%. For small farms the differences can be up to a factor of 3. CH4 emissions during winter seem to be underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号