首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用亚硫酸氢钠(NaHSO3)强化高锰酸钾(KMnO4)去除苯胺(AN).通过批次处理实验研究了AN去除率与反应条件的关系,分析了KMnO4投加量、NaHSO3投加量、初始pH值和反应时间之间的交互作用;以石蜡为胶结剂分别制备基于NaHSO3和KMnO4的可渗透反应栅(PRB),对模拟AN污染地下水进行连续处理,研究不同PRB的释放规律和组合PRB对AN的去除特性.结果表明,NaHSO3可显著强化KMnO4对AN的降解速率,当AN初始浓度为5mg/L,NaHSO3/KMnO4/AN为5/5/1时,AN去除率达99.2%,高于单独KMnO4处理的85.6%.AN去除率与KMnO4投加量、NaHSO3投加量和反应时间线性正相关,与溶液初始pH值线性负相关.采用二次多项式和逐步回归法拟合了AN去除率与反应条件间的关系,模拟值与验证实验结果相近,模型精度较好.PRB中NaHSO3溶出速率显著大于KMnO4.当NaHSO3和KMnO4混合的可渗透反应栅(SB/PM-PRB)质量为5g,进水流速和AN浓度分别为0.1mL/min和10mg/L时,168h内AN的去除率保持在99%以上,且克服了KMnO4单独处理出水色度过高的问题.傅里叶变换红外光谱分析表明,反应前后PRB成分没有显著变化,PRB稳定性较好.紫外光谱扫描结果表明,AN和苯环特征峰强度均显著下降,表明SB/PM-PRB能使AN开环降解和破坏氨基结构.  相似文献   

2.
采用前置硫化法合成制备硫化纳米铁,研究其与过硫酸盐对硝基苯的联合降解效果,检测反应前后溶液中铁离子和TOC浓度变化,对反应前后的S-NZVI进行表征,分析S-NZVI和PS对NB的联合降解机制.以纳米硅胶溶液为胶结剂,以PS为活性成分,制备缓释PS溶胶,注入砂柱中扩散形成凝胶,与S-NZVI构成S-NZVI/PS组合反应带,研究其对模拟硝基苯污染地下水的原位修复效果.结果表明,S-NZVI能够高效去除NB并生成大量苯胺(AN),S-NZVI被PS氧化产生的Fe2+与PS组成活化过硫酸盐,对AN具有较好的降解和矿化效果.当NB浓度为100mg/L、S-NZVI和PS的投加量分别为0.5,2.5g/L时,NB去除率达91%,AN出水浓度为1.96mg/L,TOC去除率达64.09%.反应后S-NZVI的主要铁氧化产物为Fe3O4和FeO(OH).反应带实验结果表明,S-NZVI/PS组合反应带可有效去除地下水的NB并高效消减NB还原产生的AN,当进水中NB浓度为100mg/L,流量为0.4mL/min,注入S-NZVI含量为1200mg/L的浆液200mL,二氧化硅含量为30%、PS含量为12.5%的PS凝胶4.8g时,S-NZVI/PS组合反应带7d内对AN的去除率最高达97.6%,NB当量累计去除率为83.7%.  相似文献   

3.
采用前置硫化法合成制备硫化纳米铁,研究其与过硫酸盐对硝基苯的联合降解效果,检测反应前后溶液中铁离子和TOC浓度变化,对反应前后的S-NZVI进行表征,分析S-NZVI和PS对NB的联合降解机制.以纳米硅胶溶液为胶结剂,以PS为活性成分,制备缓释PS溶胶,注入砂柱中扩散形成凝胶,与S-NZVI构成S-NZVI/PS组合反应带,研究其对模拟硝基苯污染地下水的原位修复效果.结果表明,S-NZVI能够高效去除NB并生成大量苯胺(AN),S-NZVI被PS氧化产生的Fe2+与PS组成活化过硫酸盐,对AN具有较好的降解和矿化效果.当NB浓度为100mg/L、S-NZVI和PS的投加量分别为0.5,2.5g/L时,NB去除率达91%,AN出水浓度为1.96mg/L,TOC去除率达64.09%.反应后S-NZVI的主要铁氧化产物为Fe3O4和FeO(OH).反应带实验结果表明,S-NZVI/PS组合反应带可有效去除地下水的NB并高效消减NB还原产生的AN,当进水中NB浓度为100mg/L,流量为0.4mL/min,注入S-NZVI含量为1200mg/L的浆液200mL,二氧化硅含量为30%、PS含量为12.5%的PS凝胶4.8g时,S-NZVI/PS组合反应带7d内对AN的去除率最高达97.6%,NB当量累计去除率为83.7%.  相似文献   

4.
高级催化氧化法降解有机工业废水的研究   总被引:11,自引:1,他引:10  
用煤灰渣加入活性组分复合成催化剂,以H2O2作为氧化剂处理有机工业废水.结果表明,该方法对有机工业废水具有很高的处理效率.在ρ(H2O2)/ρ(CODCr)为0.6,pH为4,反应2 h条件下,CODCr去除率可达83%以上.该催化剂是以一定粒度的燃煤锅炉废渣为载体,加入FeSO4, MnO2, Al2O2和SiO2多种活性组分复合而成.   相似文献   

5.
Fenton法处理黄连素废水试验   总被引:3,自引:1,他引:2  
采用Fenton氧化法处理黄连素成品母液废水,考察初始pH、反应温度、反应时间、c(H2O2)以及c(FeSO4)对处理效果的影响. 通过正交试验分析了该法的作用机理,确定了反应过程中的关键控制因素.结果表明,Fenton法处理黄连素成品母液废水时,影响其CODCr去除率的因素依次为反应温度、c(H2O2)、初始pH、c(FeSO4)以及反应时间. 通过单因素试验确定其主要影响因素的最佳水平:初始pH为2,反应温度为40 ℃,反应时间为30 min,c(H2O2)为0.24 mol/L,c(FeSO4)为10 mmol/L. 该条件下CODCr和黄连素的去除率可分别达到44.1%和96.2%,ρ(BOD5)/ρ(CODCr)由小于0.05提高到0.3,废水可生化性显著提高.   相似文献   

6.
以海藻酸钠(SA)为胶结剂分别制备了基于零价铁(ZVI)和过硫酸钠(PS)缓释材料的可渗透反应栅(PRB),研究了ZVI可渗透反应栅(ZVI-PRB)介质与ZVI-PS组合可渗透反应栅(ZVI-PS-PRB)介质对地下水中硝基苯(NB)及其主要还原产物苯胺(AN)的去除特性,考察了ZVI-PRB的填充量、进水流速、ZVI-PRB与PS-PRB的组合方式、PS-PRB的填充量等对出水中NB和AN浓度的影响,并采用当量因子法对不同处理方式的降解效果进行了对比分析。结果表明:NB去除率与地下水流速呈反相关关系,与ZVI-PRB填充量呈正相关关系,当ZVI-PRB填充量为10 g、地下水流速为0.4 mL/min时,10 d内出水中NB的去除率保持在96.7%以上;ZVI-PRB和PS-PRB串联组合可在高效降解NB的同时降低出水中AN的浓度;ZVI-PRB和PS-PRB等比串联组合且填充量均为10 g时NB当量的累计去除率最高,出水负面环境影响较小。该研究结果可为ZVI-PS-PRB修复NB污染地下水提供参考。  相似文献   

7.
采用Fe2+激活过硫酸盐(PS)耦合活性炭处理焦化废水生化出水.在原水TOC为86.4mg/L,色度338倍的条件下,研究PS和Fe2+投加量,初始pH值等因素对处理效果的影响.结果表明:PS和Fe2+投加量分别为1.5和4mmol/L,不调节pH值(8.0),反应60min,色度和TOC去除率可达87.17%和68.16%.经Fe2+/PS体系处理的废水采用A,B两种活性炭进行吸附处理,结果表明:B炭的吸附效果较好,且可去除Fe2+/PS体系残留的PS.B炭15g/L,反应120min时,出水色度为14倍,TOC 11.86mg/L.Fe2+激活PS氧化法耦合活性炭吸附深度处理焦化废水时,总色度去除率95.86%,总TOC去除率86.27%.对生化出水,Fe2+/PS体系出水和活性炭吸附出水进行三维荧光光谱扫描分析,结果表明:Fe2+/PS体系能氧化分解废水中部分类腐植酸物质,而活性炭吸附则可进一步去除了废水中残留的类腐植酸物质.  相似文献   

8.
针对酸溶态占比高的Cr(Ⅵ)污染土壤还原解毒不彻底、后期易返黄的问题,确定了水溶态Cr(Ⅵ)快速还原、酸溶态Cr(Ⅵ)长效缓释还原的修复思路。试验考察了单独添加硫铁矿对Cr(Ⅵ)处理的效果,并采用FeSO4·7H2O、硫铁矿分步还原法探究处理后污染土壤的长效稳定性,进行了540 d的长期监测。结果表明:FeSO4·7H2O还原药剂长效性较差,在自然环境中容易发生氧化,失去还原效能,无法完全还原缓慢释放的酸溶态Cr(Ⅵ),有必要加入长效还原缓释药剂对酸溶态Cr(Ⅵ)进行持续还原。硫铁矿单独修复水溶态Cr(Ⅵ)为主的污染土壤,在添加20%的硫铁矿,反应14 d的条件下,土壤中Cr(Ⅵ)浸出浓度降至30.4 mg/L。采用FeSO4·7H2O和硫铁矿分步还原酸溶态Cr(Ⅵ)污染土壤,先加入2%的FeSO4·7H2O,养护3 d后再加入3%的硫铁矿反应27 d,Cr(Ⅵ)浸出浓度即降至0.29 mg/L,加入5%的硫铁矿,反应4 d后Cr(Ⅵ)浸出浓度即可降至0.43 mg/L,之后Cr(Ⅵ)浸出浓度保持稳定。经过540 d的长期监测未发现浸出浓度有上升情况。  相似文献   

9.
重污染底泥原位修复常需外加大量电子受体,但大量实践表明电子受体直接投加存在作用时效短、微生物利用效率低等问题.针对该问题,开发了电子受体缓释-功能微生物协同的复合环境功能材料,并探讨了功能材料对底泥原位修复效果.结果表明:①复合功能材料〔以Ca(NO32计,下同〕仅投加5.7 g/kg时,底泥中ORP(氧化还原电位)提升了60.17%~73.96%,AVS(酸可挥发性硫化物)去除率高达90%,是其他传统原位修复材料的1倍.②相较于单独投加Ca(NO32的修复方式,复合功能材料最大可去除上覆水中33.78%的ρ(TN),而且ρ(NH4+-N)也降低了27.90%.③复合功能材料同时促进上覆水中TP和CODCr的去除,其去除率分别在78%和30%以上.④从经济成本和对环境影响的角度出发,在工程应用上宜用电子受体:固定剂:促凝剂:发泡剂:塑形剂:复合微生物菌剂:水的质量比为1:5:0.5:0.5:0.1:1:1的复合功能材料.研究显示,硝酸盐缓释-功能微生物复合材料是一种高效的重污染底泥原位修复材料,能显著提升底泥和上覆水中污染物去除效率,降低ρ(NH4+-N)、ρ(CODCr),避免上覆水体受到二次污染.   相似文献   

10.
以厌氧颗粒污泥制备了颗粒污泥炭,并用酸进行改性,研究其在异相类芬顿体系中降解左氧氟沙星(LEVO)效能.无机酸改性颗粒污泥炭(GSC-H3PO4、GSC-H2SO4和GSC-HCl)和未改性颗粒污泥炭(GSC-0)的吸附作用均低于5%,而颗粒污泥(GS)和草酸改性颗粒污泥炭(GSC-H2C2O4)的吸附去除率约为20%.待吸附平衡后,进行异相类芬顿反应,催化剂对LEVO和总有机碳(TOC)的去除率顺序为:GSC-H3PO4 > GSC-H2SO4 > GSC-HCl > GSC-H2C2O4,远高于GSC-0、GS和未加催化剂的反应.GSC-H3PO4表面铁含量高达12.73%,能催化产生更多的·OH,有利于有机污染物的降解.GSC-H3PO4对LEVO和TOC的去除率分别高达98.5%和51.9%,重复使用5次后,催化剂上铁的溶出率低于0.8%,仍保持较高的催化效率.通过三维荧光光谱分析和中间产物检测,提出一种LEVO降解途径.此外,GSC-H3PO4催化剂还能有效处理医院废水.  相似文献   

11.
采用前置硫化合成法制备硫化纳米铁(S-NZVI)并进行表征,采用模拟砂柱创建S-NZVI原位反应带,研究其对硝基苯(NB)污染地下水的修复效能.X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)表征结果表明,S-NZVI是以Fe(0)为核心,硫铁化合物为外壳的颗粒,可以有效抑制S-NZVI颗粒的团聚,具有较好的分散性.与NZVI相比,S-NZVI对NB的去除效率更高,最高去除率可达99.65%,在砂柱中具有更强的穿透能力.S-NZVI对NB的去除过程符合准一级动力学模式.S-NZVI对NB的去除机理是先将NB快速吸附于表面,然后再进一步通过化学还原降解,因此NB去除较快而苯胺生成较慢.S-NZVI反应带对NB泄露区的削减幅度较大,增加单井S-NZVI注入量和增加注入井均可提高修复效果,7d内NB累计去除率最高达87.43%,但前2d出水NB浓度仍然较高;S-NZVI反应带对NB传输区具有较好的修复效果,增加注入井比增加单井S-NZVI注入量具有更好的持续性和更高的NB去除率,7d内NB累计去除率最高达99.90%.  相似文献   

12.
PRB技术对PCBs及重金属污染地下水的试验研究   总被引:6,自引:0,他引:6  
可渗透反应墙(Permeable Reactive Barrier PRB)技术是原位修复污染土壤及地下水的新型技术。试验以多氯联苯(PCBs)及重金属为靶污染物,设计3个PRB反应装置:柱Ⅰ、柱Ⅱ、柱Ⅲ,分别以还原铁粉、废料生铁、废料生铁与活性炭的混合物为反应介质,对PRB技术治理PCBs及重金属污染的地下水的可行性进行试验研究。试验结果表明:进入稳定期,柱Ⅰ、柱Ⅱ、柱Ⅲ对PCBs的去除效率分别为98%,97%,96%;对重金属(Cr、Cd、Pb、As)的去除效率均在97%以上。通过各柱处理,出水水质均达到地下水水质Ⅲ标准。说明PRB技术治理PCBs及重金属污染的土壤及地下水是可行的。  相似文献   

13.
Fe0还原地下水中2,4-DNT影响因素及产物   总被引:1,自引:1,他引:0  
为了解零价铁(Fe0)修复污染地下水中微量2,4-二硝基甲苯 (2,4-DNT)还原规律,采用序批试验,考察地下水中常见阴离子(Cl-,NO3-和PO43-)及重金属Cr(Ⅵ)对Fe0还原2,4-DNT能力的影响,并分析了Fe0还原2,4-DNT的中间产物和最终产物.结果表明:Cl-与NO3-均能显著提高2,4-DNT的还原降解率,当反应进行120 min时,溶液中c(Cl-)由0 mmol/L增加到1 mmol/L,Fe0对2,4-DNT的还原降解率由31.4%增加到97.2%;溶液中c(NO3-)由0 mmol/L增加到1 mmol/L,还原降解率由31.4%增加到78.9%;PO43-则表现为明显的抑制作用,当反应进行120 min时,溶液中c(PO43-)由0 mmol/L增加到1 mmol/L,还原降解率由31.4%降至2.1%.Cr(Ⅵ)能与2,4-DNT竞争Fe0提供的活性电子,当ρ〔Cr(Ⅵ)〕为20 mg/L时,Cr(Ⅵ)对Fe0还原2,4-DNT能力的抑制作用显著.Fe0还原2,4-DNT的中间产物为4-氨基-2硝基甲苯(4A2NT)和2-氨基-4硝基甲苯(2A4NT),最终产物为2,4-二氨基甲苯(2,4-DAT).因此,在地下水硝基苯类污染物零价铁修复实践中,应考虑地下水中离子组分对反应过程的影响;2,4-DNT的还原最终产物为2,4-DAT,无法进一步降解,需后续处理.   相似文献   

14.
为解决Fenton技术在地下水有机污染的原位修复中铁基材料难注入、降低二次污染的问题,并拓宽适用的pH范围. 以含水层介质(aquifer medium,简称“AM”)中的铁矿物为铁源,综合考虑区域地下水系统分区、地质类型和地质时代,采集京津冀5处典型地区浅层含水层介质,以天然还原剂/配体-抗坏血酸(ascorbic acid,简称“AA”)为强化试剂,构建了AM/AA/H2O2体系,并探究该体系对硝基苯酚(PNP)的降解效能以及环境pH对PNP降解的影响,同时揭示了AM/AA/H2O2体系降解污染物的机制. 结果表明:①五处含水层介质主要为长石类介质和碳酸盐类介质,表面都均匀分布了一定量的铁矿物,且以长石类介质催化H2O2分解降解PNP效果较好. ②抗坏血酸可显著促进含水层介质催化H2O2分解降解PNP,反应40 h内PNP的去除率最高可在89.00%以上(TOC的去除率为84.03%),与未加抗坏血酸的体系相比提升了6.82倍. ③降解PNP的主要功能自由基为·OH,是由液相中经抗坏血酸络合的铁离子催化H2O2分解产生的. ④与传统Fenton体系相比,抗坏血酸可有效拓宽AM/H2O2体系适用的pH范围,初始pH在5~10的范围内对PNP的降解无显著影响. 研究显示,AM/AA/H2O2体系在地下水有机污染的原位修复中具有较大的应用潜能.   相似文献   

15.
李敬杰  蔡五田  吕永高  边超  杨骊  王明国 《环境工程》2022,40(2):162-167,176
以Cr(Ⅵ)污染地下水场地为例,基于室内模拟实验确定的PRB墙体尺寸及反应介质,建设了国内首座连续式PRB装置,自墙体建成后运行10个月内,对墙体内外监测井水位、水环境指标进行了 4次监测.结果表明:PRB墙体内地下水流速>周边含水层中地下水流速,地下水流向虽局部有所改变,但总体上仍垂直穿过PRB墙体,未出现绕流现象;...  相似文献   

16.
为研究垃圾焚烧厂渗滤液生化出水的处理特性,对比了单独紫外(UV)体系、单独过硫酸盐(PS)体系以及紫外/过硫酸盐(UV/PS)体系深度处理垃圾渗滤液效果,发现UV/PS体系对渗滤液中有机污染物的去除效果较另外两体系的效果优异,因此采用UV/PS体系处理典型难降解有机物腐殖酸并考察体系的处理效能.在初始腐殖酸浓度为200mg/L、PS投加量为25mmol/L、初始pH值为4的条件下,UV254最大去除率为89.62%,TOC最大去除率为76.17%.研究温度、初始pH值、药剂投加比例等因素对UV/PS工艺处理渗滤液的影响,结果表明,工艺处理效果良好,最优条件为温度为35℃、pH值为4、加药比为2、运行24h,COD的去除率最大为82.64%,TOC的最大处理效能为66.69%,同时该体系对色度的去除能力符合拟二级动力学方程.本文可为垃圾焚烧厂渗滤液深度处理提供数据依据.  相似文献   

17.
EDDS螯合Fe(Ⅲ)活化过硫酸盐技术对TCE的降解效果   总被引:1,自引:0,他引:1       下载免费PDF全文
为解决传统Fe(Ⅱ)活化过硫酸盐过程中Fe有效性较低的问题,采用可生物降解的EDDS(乙二胺二琥珀酸)螯合Fe(Ⅲ)活化过硫酸盐处理水溶液中的TCE(三氯乙烯),考察c(过硫酸盐)、c〔Fe(Ⅲ)〕/c(EDDS)〔下称Fe(Ⅲ)/EDDS〕、溶液初始pH以及阴离子浓度对TCE降解效果的影响,并研究体系中产生的活性氧自由基. 结果表明:c(过硫酸盐)为15.0 mmol/L、Fe(Ⅲ)/EDDS为4时,60 min内TCE去除率达99.7%;提高c(过硫酸盐)、Fe(Ⅲ)/EDDS均有利于TCE降解,但超过一定限值后对TCE去除效果增强不明显;溶液初始pH(3~11)越高,TCE去除率越低;加入Cl-、HCO3-、SO42-和NO3- 4种阴离子均会抑制TCE降解,抑制程度表现为HCO3->Cl- >SO42->NO3-;自由基清扫试验证实体系中存在SO4-·、·OH和O2-·等3种活性氧自由基,·OH对TCE的降解起主导作用. 因此,EDDS螯合Fe(Ⅲ)活化过硫酸盐技术能够产生以·OH为主的活性氧自由基,从而快速高效去除水溶液中TCE,但降解过程受水质参数影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号