首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
COD/SO42-值对硫酸盐还原率的影响   总被引:12,自引:0,他引:12  
研究利用 UASB反应器考察了 COD和硫酸盐浓度的比值对硫酸盐还原的影响 ,同时分析了硫酸盐还原菌和产甲烷菌对COD的竞争情况 .发现在 HRT为 3.8h,SO42- 负荷为 6~7kg·( m3· d)-1,SO42- 浓度为 1000mg·L-1 条件下 :1在 COD不足时 ,SRB与 MPB在竞争中占微弱优势 ;对于产甲烷活性比较好的厌氧污泥要经过较长的时间 ,SRB才能确立优势菌种的地位 .2 COD/ SO42- 比值决定了 SO42- 的去除率 .比值等于2时 ,SO42- 的还原率在 95%以上 ;当比值为 1.5时 ,SO42- 还原率为 75% ;当比值为 1时 ,SO42-的还原率为 60 % .  相似文献   

2.
桂林甑皮岩洞穴遗址是我国新石器时代洞穴遗址的典型代表。污染物进入到以裂隙介质为主地下水所形成的还原环境后,其性质可能会改变从而侵蚀遗址文化层。本文通过采集地下水水-气界面的H2S和CH4气体,结合硫酸盐的硫同位素δ34S-SO42-、溶解有机碳(DOC)、化学需氧量(COD)、硫酸盐还原菌(SRB)等指标,研究遗址地下水水-气界面侵蚀性气体H2S的产生机理。结果表明:甑皮岩水体SO42-浓度范围为0.57~131.00 mg/L,其空间分布不均匀,来源主要受到大气降水、硫化物矿物的氧化及微生物硫酸盐还原的影响;丰富的有机质为硫酸盐还原提供能量,DOC与COD浓度存在空间差异,高值均位于人类活动强烈的径流上游区;SRB普遍参与硫酸盐还原作用,气温、降水和有机质决定SRB数量在时空上表现为雨季 > 旱季、地表水 > 地下水;气温较高促进H2S的形成,SRB与环境的还原程度均影响H2S和CH4浓度。H2S性质不稳定易氧化为硫酸,若继续聚集将加剧遗址的化学侵蚀。建议增加污染物的运移和反应产物的监测,关注遗址的保存环境。  相似文献   

3.
A two-stage UASB reactor was employed to remove sulfate from acrylic fiber manufacturing wastewater. Mesophilic operation (35±0.5℃) was performed with hydraulic retention time (HRT) varied between 28 and 40 hr. Mixed liquor suspended solids (MLSS) in the reactor was maintained about 8000 mg/L. The results indicated that sulfate removal was enhanced with increasing the ratio of COD/SO42-. At low COD/SO42-, the growth of the sulfate-reducing bacteria (SRB) was carbon-limited. The optimal sulfate removal efficiencies were 75% when the HRT was no less than 38 hr. Sulfidogenesis mainly happened in the sulfate-reducing stage, while methanogenesis in the methane-producing stage. Microbes in sulfate-reducing stage performed granulation better than that in methane-producing stage. Higher extracellular polymeric substances (EPS) content in sulfate-reducing stage helped to adhere and connect the flocculent sludge particles together. SRB accounted for about 31% both in sulfate-reducing stage and methane-producing stage at COD/SO42- ratio of 0.5, while it dropped dramatically from 34% in sulfate-reducing stage to 10% in methane-producing stage corresponding to the COD/SO42- ratio of 4.7. SRB and MPA were predominant in sulfate-reducing stage and methane-producing stage respectively.  相似文献   

4.
通过土壤培养实验考察了硫酸盐还原菌(SRB)包括希瓦氏菌、梭状芽胞杆菌和两者混合菌对碱性和酸性农田土中有效态重金属(Cd、Pb、Cu和Zn)的钝化效果及其作用机制.结果表明,在相同接菌量下,希瓦氏菌处理组对碱性土中有效态重金属的钝化效果优于梭状芽胞杆菌和两者混合菌的处理组;而不同种类的SRB对酸性土中有效态重金属的钝化效果无显著差异.培养第20 d后土壤中有效态重金属的钝化率不再显著变化.SRB处理对碱性土中有效态重金属的钝化率可达80%以上,而对酸性土中有效态重金属的钝化率低于40%.在碱性土中,SRB能够有效还原SO42-,并且提高土壤pH值,使S2-可与重金属紧密结合,显著提高有效态重金属钝化率.尽管SRB使酸性土壤pH值升高,但土壤仍然呈酸性使SO42-还原受到抑制,不利于有效态重金属的钝化.总体来看,SRB适用于碱性和酸性土壤的重金属污染治理,但与酸性土壤相比,SRB对碱性土壤中有效态重金属的钝化效果更好.  相似文献   

5.
杨柳  何晴  盛重义 《环境科学》2021,42(10):4678-4686
燃煤电厂排放的颗粒物可以分为可凝结颗粒物(condensable particle matter,CPM)和可过滤颗粒物(filterable particle matter,FPM).通过分析7个超低排燃煤电厂的湿法脱硫(wet flue gas desulfurization,WFGD)进出口和湿电除尘(wet electrostatic precipitator,WESP)出口烟气中CPM和FPM的SO42-和NO3-浓度,揭示了这2种典型水溶性离子在烟道内的变化规律与转化特征.结果表明在WFGD前后,CPM中的SO42-和NO3-浓度呈降低趋势,其降低率范围分别为43.12%~86.84%和17.99%~91.58%,而FPM中SO42-和NO3-浓度呈增大趋势.在WESP前后,CPM中SO42-和NO3-浓度呈增大趋势,增长率范围分别为21.05%~424.65%和13.51%~298.37%,而FPM中SO42-和NO3-浓度呈减小趋势.在WFGD中,随着烟气温度降低和湿度增加,部分CPM会通过冷凝和团聚作用进一步转化为FPM;在WESP中,由于烟气一直处于低温、高湿的条件,烟气中存在的SO2与NO2会结合水蒸气发生氧化还原反应,进而经过协同作用促进CPM中SO42-和NO3-的生成.  相似文献   

6.
针对首次分离得到的一株具有同步脱氮除磷新功能的热带假丝酵母(Candida tropicalis) PNY2013,通过生理及动力学特征,连续流运行操作及其在含糖类工业废水中的应用3个环节,探讨了不同碳源模式下PNY2013同步脱氮除磷的特性.结果表明:PNY2013以葡萄糖、乙醇及乙酸为唯一碳源时均生长良好,其最大比增长速率μmax分别为0.1327、0.1252及0.1115 h-1,其同步脱氮除磷率分别可达100%、80%、100%(NH4+-N)及93%、95%、98%(PO43--P).3种碳源下PNY2013同步脱氮除磷的最佳条件基本接近为:温度30℃,pH=8.0,溶解氧0~2 mg·L-1,C/N=200∶5左右.PNY2013同步脱氮除磷的长期连续运行条件下的实验进一步表明,以葡萄糖为碳源条件下,进水NH4+-N及PO43--P浓度分别达400及80 mg·L-1时,两者去除率均接近100%.与这种超强能力相比,以乙醇及乙酸为碳源条件下,进水NH4+-N及PO43--P浓度分别达100及20 mg·L-1时,两者的去除率也可达60%~80%(NH4+-N)及40%(PO43--P),显示出相当的同步脱氮除磷能力.在以模拟制糖废水、淀粉加工废水、啤酒废水、味精废水这4种典型含糖工业废水为碳源条件下,除淀粉加工废水外PNY2013均能有效去除COD、NH4+-N和PO43--P,其中,制糖、啤酒、制药废水中的COD去除率分别可达40%、89%、96%,NH4+-N去除率分别为85%、94%、76%,PO43--P去除率均为90%.即使在40000 mg·L-1(制糖)及12500 mg·L-1(啤酒)的高COD条件下,PNY2013也均具有稳定的NH4+-N和PO43--P去除效果,显示出良好的同步脱氮除磷应用前景.  相似文献   

7.
为研究天津市高校道路扬尘PM2.5中水溶性离子的污染特征、来源及校内外差异,于2018年7—8月采集天津市9所高校道路扬尘样品,用离子色谱法对其中8种水溶性离子(Ca2+、K+、Mg2+、Na+、Cl-、NH4+、NO3-、SO42-)进行分析.结果显示:①水溶性离子占PM2.5的11.65%,PM2.5中占比大于1%的离子有Ca2+和SO42-,其中Ca2+最多,占到总水溶性无机离子的65.75%;②入校道路离子含量(12.76%)稍高于校内道路(11.11%),其中8种离子含量的差异均无统计学意义;CE/AE(阴阳离子当量浓度比)值为9.59(远大于1),PM2.5呈较强碱性;③NH4+与SO42-、NO3-主要以(NH42SO4和NH4NO3的形态结合;④NO3-/SO42-的比值为0.45,说明固定源的贡献更大;⑤天津市高校道路扬尘PM2.5主要来源于海盐粒子、燃煤、机动车尾气、建筑水泥尘等.  相似文献   

8.
紫外/亚硫酸盐(UV/SO32-)是一种基于紫外活化SO32-离子依靠生成还原性自由基——水合电子降解目标污染物的高级还原工艺.本文研究了UV/SO32-加速降解含碘造影剂泛影酸钠(DTZ)的效能、机制与影响因素以及UV/SO32-降解DTZ的路径.结果表明,UV/SO32-降解DTZ符合一级动力学模型,降解速率快于单独UV和紫外/过氧化氢工艺,且降解速率随SO32-浓度的增加而升高.弱碱性或碱性水质可强化UV/SO32-降解效率,背景有机物对降解DTZ有一定抑制作用.DTZ降解机制包括直接光解和还原性自由基攻击,其中自由基攻击占主要部分.DTZ在UV/SO32-的降解路径包括取代、脱羧基羟基化和酰胺键断裂等.  相似文献   

9.
基于2019年三亚城区站点PM2.5中水溶性离子在线观测数据,分析了水溶性离子的质量浓度水平、不同时间尺度和不同PM2.5浓度下的特征,探讨了气象因子对离子组分的影响,通过主成分分析(PCA)解析来源.结果表明:2019年三亚城区总水溶性离子(TWSI)质量浓度为8.173 μg·m-3,占ρ(PM2.5)的58.4%,各离子质量浓度大小依次为:ρ(SO42-) > ρ(NO3-) > ρ(K+) > ρ(NH4+) > ρ(Na+) > ρ(Cl-) > ρ(Ca2+) > ρ(F-) > ρ(Mg2+) > ρ(NO2-),其中二次离子SO42-、NO3-、NH4+(SNA)和K+为主要离子组分,占总水溶性离子的80.0%,海盐粒子Na+及Cl-之和占比为14.7%,且与风速呈显著正相关;TWSI季节浓度变化特征明显,秋季最高,春冬季次之,夏季最低,主要与秋冬季风速较大、主导风向转为东北风,易受外来传输有关;SO42-在各个季节均是浓度及占比最高的离子,硫氧化率(SOR)的日均值均大于0.1,存在显著的SO2向SO42-转化的过程;PCA分析结果表明三亚城区水溶性离子主要受海洋源、二次源及生物质燃烧源的影响.  相似文献   

10.
湖北丹江口水库主要离子化学季节变化及离子来源分析   总被引:11,自引:7,他引:4  
李思悦  谭香  徐志方  张全发 《环境科学》2008,29(12):3353-3359
2004~2006年对丹江口水库中的5个点位水质的 t 、pH、EC、TDS、ORP、SO2-4、Cl-、NO-3、HCO-3、Ca2+、Mg2+、Na+、K+和Si进行了测定.综合运用方差分析及主成分分析对它们的季节变化及其来源进行了研究.结果表明,丹江口库区水体呈弱碱性,属于弱矿化度水,水质类型为HCO-3-Ca型水.主要阴、阳离子浓度范围为:Cl-,(4.0±0.5~6.9±1.8)mg·L-1;NO-3,(4.6±0.9~6.8±1.7)mg·L-1;SO2-4,(24.3±2.7~35.4±6.9) mg·L-1;HCO-3,(133.0±11.7~153.5±29.6)mg·L-1;Na+,(2.0±0.3~5.3±1.0)mg·L-1;K+,(0.7±0.09~1.6±0.7) mg·L-1;Ca2+,(33.0±2.1~46.6±0.8)mg·L-1;Mg2+,(8.0±2.5~10.5±3.2)mg·L-1.方差分析显示除HCO-3和Si外,t、pH、EC、TDS、ORP、SO2-4、Cl-、NO-3、Na+、K+、Ca2+、Mg2+都表现出了显著的季节性差异,主要离子化学汛期浓度均小于对应的非汛期浓度.Na+和Mg2+的浓度只表现出秋汛<秋季,NO-3和SO2-4浓度却呈现出秋汛>秋季,这主要归因于降雨的大气沉降对水化学的贡献不同.HCO-3占主要阴离子的75%~88%,Ca2+和碱土金属分别占主要阳离子的60%~80%和87%~96%,表明碳酸盐岩风化是水体质子的主要来源及主要化学风化类型.参照我国及世界卫生组织饮用水标准,主要离子的浓度并未对人体产生危害.  相似文献   

11.
通过间歇实验和连续流试验 ,探讨了利用产酸相处理硫酸盐有机废水时产酸菌 (AB)的主要发酵类型、硫酸盐还原菌(SRB)对底物的利用规律以及系统中这两大菌群间的协同关系 .间歇实验结果表明 ,AB的液相末端产物中乙醇占 3 5 6 %、乙酸占 3 7 7% ,同时有氢气产生 ,属于乙醇型发酵类型 .SRB容易利用的底物为氢气、乙醇和乳酸 ,不易利用乙酸、丙酸和丁酸 .SRB将乙醇转化为乙酸 ,而乙酸极少被继续转化 ,导致反应器内出现乙酸积累现象 .连续流试验结果表明 ,系统中硫酸根还原效果与产酸菌和硫酸盐还原菌的协同作用状态密切相关 :当产酸菌和硫酸盐还原菌处于较好的协同作用状态时 ,系统对硫酸根的转化率较高 ;反之则使硫酸根的转化率降低  相似文献   

12.
反硝化抑制硫酸盐还原的工艺特性   总被引:1,自引:0,他引:1  
金鹏康  杨珍瑞  李蓉  李岩  周立辉 《环境科学》2017,38(5):1982-1990
本实验通过建立一套两级串联UASB反应器研究油田集输系统及高含盐量废水中反硝化抑制硫酸盐还原的工艺处理特性,并在工艺稳定运行后对形成的颗粒污泥性状及微生物特性进行研究.结果表明,添加Na NO2可促使反应体系中反硝化细菌(denitrifying bacteria,DNB)数量由7.0×103CFU·(100 m L)~(-1)增加至7.3×105CFU·(100 m L)~(-1)并保持稳定,DNB对硫酸盐还原菌(sulfate-reducing bacteria,SRB)的竞争抑制作用导致SRB数量由8.0×105CFU·(100 m L)~(-1)减少,稳定至7.6×104CFU·(100 m L)~(-1),同时,硫酸盐还原过程被抑制,硫离子的抑制率不断增加,最终稳定至82%.生物量与亚硝酸盐的质量比为1 200时,反应体系对S2-的抑制率最高,达到92%,可实现较好的硫酸盐还原过程抑制效果;该工艺对其抑制率可保持在92%左右,具有较好的稳定性.形成的反硝化颗粒污泥为棕褐色,基本为椭球形和球形,表面光滑且密实.反硝化抑制前,颗粒污泥的粒径多分布于1.0~1.4 mm,平均粒径为1.17 mm,经反硝化抑制后,粒径多分布在1.2~1.6 mm,平均粒径为1.21 mm,反硝化抑制过程促进污泥粒径的小幅增加;形成的反硝化颗粒污泥平均沉速为47.6 m·h~(-1),沉降性能较好.PCR-DGGE分析结果表明,反硝化抑制作用使微生物菌种由18种减少至14种,优势菌种由4种减至3种,多样性降低,反硝化抑制前后微生物种群相似性为62.6%,种群结构发生较大改变,优势菌群由SRB演变为DNB,SRB优势菌种由4种减至2种,同种菌的丰度明显降低;反硝化抑制过程的主要功能菌为Uncultured Sulfurimonas sp.,是一种自养型反硝化细菌,与SRB抢夺电子并占优势,抑制硫酸盐还原过程及SRB生长繁殖,从而抑制硫化物的产生.  相似文献   

13.
天然和水热合成针铁矿对有机物厌氧分解释放CH4的影响   总被引:4,自引:3,他引:1  
以乙酸钠为碳源,通过序批式实验研究了天然和水热合成针铁矿对铁还原菌-甲烷菌厌氧微生物生化系统中CH4释放量的影响.通过对实验过程中气体组分、溶液中总有机碳(TOC)、总无机碳(TIC)、Fe2+等主要组分的分析测定和固体产物的X-射线衍射(XRD)分析,结合对矿物的比表面(BET)、XRD、X-射线荧光光谱(XRF)分析表征,探讨了针铁矿在铁还原菌存在下对有机物厌氧消化产CH4的影响和作用机制.利用修正Gompertz方程对累计产CH4和CO2量进行拟合.结果表明,与对照实验组相比,添加针铁矿能使CH4累计释放量提前60~78 d达到最大值,并且能有效降低CO2释放量达30%~67%,添加水热合成针铁矿较之天然针铁矿更能促进CH4释放和减少CO2释放;固体产物分析表明添加针铁矿促使菱铁矿形成固定部分CO2.  相似文献   

14.
The short-and long-term effects of chlortetracycline(CTC) on the nitritation-anaerobic ammonium oxidation(anammox) process were evaluated. The half maximal inhibitory concentration of CTC in the batch tests of the nitritation-anammox process was 278.91 mg/L at an exposure time of 12 hr. The long-term effects of CTC on the process were examined in a continuous-flow nitritation-anammox reactor. Within 14 days, the nitrogen removal rate significantly decreased from 0.61 to 0.25 kg N/m~3/day with 60 mg/L CTC in the influent.The performance suppressed by CTC barely recovered, even after CTC was removed from the influent. Furthermore, the inhibition of CTC also reduced the relative abundance of ammonium oxidizing bacteria(AOB) and anaerobic ammonium oxidizing bacteria(An AOB)in the reactor, resulting in both a decreased amount of and an imbalance between AOB and An AOB. When fresh anammox sludge was reseeded into the nitritation-anammox reactor,the nitrogen removal rate recovered to 0.09 ± 0.03 kg N/m~3/day.  相似文献   

15.
污水处理系统中硝化菌的菌群结构和动态变化   总被引:3,自引:0,他引:3  
研究分析了4种不同工艺类型的城市污水处理厂中氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的丰度及菌群结构.实时定量PCR结果表明4种工艺中AOB菌群的丰度范围为8.56×106~4.46×107cells/g MLSS;NOB菌群的丰度为3.37×108~1.53×109cells/g MLSS.每个工艺中Nitrospira都是优势NOB,占NOB菌群的88%以上.A2O工艺冬季AOB和Nitrospira丰度比夏季均有所降低,这是导致冬季生物脱氮效果变差的主要原因.基于amo A基因的系统发育分析结果显示所有的序列属于Nitrosomonas,其中Nitrosomonas oligotropha cluster占克隆文库的60.1%,是AOB种群中的优势菌属,Nitrosomonas-like cluster和Nitrosomonas europaea cluster次之,分别占克隆文库的29.6%和9.1%.N.europaea cluster只在A2O工艺中出现,且在A2O工艺夏季污泥样品克隆文库中达到44.7%.低DO运行使N.europaea cluster成为优势AOB是A2O工艺夏季出现较高亚硝酸盐积累率的主要原因.研究结果证实了城市污水处理厂中优势AOB和NOB分别为Nitrosomonas和Nitrospira,硝化菌群占总菌群的1%~7%,其丰度、相对含量和菌群结构是影响硝化效果的主要因素.  相似文献   

16.
硫酸盐废水生物脱硫研究进展   总被引:7,自引:1,他引:6  
含硫酸盐废水的污染是一个全球性的问题。生物脱硫技术处理该类废水具有投资少、成本低、去除率高,无二次污染等优点,而成为废水处理技术的前沿课题。文章简要介绍了生物脱硫技术的基本原理;描述了废水脱硫微生物种类及其影响因素;重点阐述了国内外硫酸盐废水生物脱硫工艺的沿革和最新进展,并在此基础上,提出了酸酸盐废水生物脱硫技术的发展前景。  相似文献   

17.
毕贞  董石语  黄勇 《环境科学》2021,42(3):1477-1487
厌氧条件下,ANAMMOX培养物中发生的硫酸盐型氨氧化(SRAO)现象被认为是由ANAMMOX细菌(AnAOB)介导的自养生物转化过程.在这个过程中,作为电子供体的氨被电子受体硫酸盐氧化.在某一些自然环境中观察到的氨与硫酸盐转化现象也被认为是由于上述生物转化作用而导致的.然而,在不同研究中,关于氨与硫酸盐的转化摩尔比(N/S)、硫酸盐还原的中间产物和最终产物的认定均有存在较大差异.因此,氨和硫酸盐在ANAMMOX培养物中的转化机制仍不明确.为探明ANAMMOX污泥中SRAO现象背后的基质转化途径,在不同厌氧状态(微氧:-100 mV < ORP < 0 mV,0.5 mg·L-1 < DO < 1 mg·L-1;缺氧:-300 mV < ORP < -100 mV,0.2 mg·L-1 < DO < 0.5 mg·L-1;厌氧:ORP < -300 mV,DO < 0.2 mg·L-1)以及不同污泥组成(ANAMMOX污泥和混合污泥)的条件下开展连续流实验和批次实验.结果表明,SRAO现象只能在缺氧条件且存在异养硫酸盐还原细菌(SRB)的混合污泥中发生;在ANAMMOX污泥中无论处于哪种厌氧状态,均不会发生SRAO现象.微生物群落变化与功能基因表达分析表明,ANAMMOX污泥和混合污泥中均存在以NitrosomonasNitrosospira为主的携带amoA基因的氨氧化细菌(AOB),可将氨氧化生成亚硝酸盐,为AnAOB代谢提供底物.DesulfomicrobiumDesulfovibrio以及Desulfonatronum等携带apsA基因的SRB只存在于混合污泥中,它们利用微生物衰亡释放的有机物将硫酸盐还原.AnAOB并不能以硫酸盐为电子受体氧化氨维持代谢.因此,在ANAMMOX污泥中观察到的SRAO现象(即氨与硫酸盐的同步转化)实际上是氨氧化、ANAMMOX和异养硫酸盐还原这3个过程联合的结果,上述生物转化过程分别由AOB、AnAOB和SRB完成.  相似文献   

18.
不同曝气量对SBBR短程硝化微生物特性及氮转化的影响   总被引:3,自引:1,他引:2  
在实验室规模的序批式生物膜反应器(SBBR)中研究了不同曝气量(7.2、12.0、15.6L·h-1,对应反应器中平均溶解氧浓度分别为0.5、0.8、1.2mg·L-1)下生物膜的生物特性变化及短程硝化过程规律.结果表明:减小曝气量使反应器内溶解氧浓度降低,将导致生物膜的总生物量下降,生物膜中氨氧化菌逐渐成为优势菌,无论数量还是生物活性均高于亚硝酸氧化菌,利于亚硝酸盐积累;在一个反应周期中,生物膜对溶解氧需求的分配是不同的,曝气初期溶解氧主要用于异氧菌对COD的降解,其后用于氨氮转化.根据上述规律,提出在短程硝化过程中采用"梯级递减式曝气"供氧新策略,即在反应初期保持一种较大的曝气量,提高反应器溶解氧浓度,促进COD快速降解,随后保持一种小曝气量使反应器中溶解氧维持较低的浓度,从而促进亚硝酸盐积累及优化供氧效率.  相似文献   

19.
张玉君  李冬  王歆鑫  张杰 《环境科学》2021,42(9):4383-4389
为了探究间歇梯度曝气下污泥龄对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的影响,研究短程硝化内源反硝化除磷系统对于处理低C/N比生活污水的优势作用,本文采用SBR反应器培养好氧颗粒污泥,实验进水采用实际生活污水.结果表明,在SRT由50 d逐渐降低至30 d过程中,比氨氧化速率由3.16 mg·(g·h)-1增加至4.38 mg·(g·h)-1,比亚硝酸盐氧化速率由3.4 mg·(g·h)-1降为1.8 mg·(g·h)-1左右,可知NOB活性降低约44%,从而使系统实现了短程硝化.当SRT为30 d时,由典型周期实验可知亚硝酸盐最大积累量可达6.93mg·L-1.由于系统中污泥浓度随SRT的减少而略有降低,因此在反应进行至40 d左右时根据DO曲线采取降低曝气量的策略,最终SRT为30 d时系统出水COD浓度为40.76 mg·L-1,TN浓度为12.4 mg·L-1,TP浓度为0.31 mg·L-1,强化了系统中C、N和P的同步去除,最终得到了稳定运行的短程硝化内源反硝化除磷系统.同时好氧颗粒污泥EPS含量与SRT呈现负相关性,蛋白质含量由污泥龄为50 d的66.7 mg·g-1升为30 d的95.1mg·g-1,多糖保持在12.1~17.2 mg·g-1的范围内,说明SRT的降低对蛋白质含量的影响较多糖大,当SRT为30 d时,PN/PS值保持在6.2左右,好氧颗粒污泥在该条件下仍能保持较好的结构稳定性.  相似文献   

20.
Acetochlor is an increasingly used herbicide on corn in North China. Currently, the effect of acetochlor on soil ammonia-oxidizing bacteria (AOB) communities is not well documented. Here, we studied the diversity and community composition of AOB in soil amended with three concentrations of acetochlor (50, 150, 250 mg/kg) and the control (0 mg acetochlor/kg soil) in a microcosm experiment by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and the phylogenetic analysis of excised ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号