首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
利用兰州大学半干旱气候与环境观测站(SACOL)2010年9月至2011年8月的黑碳气溶胶观测资料,分析了兰州市区和郊区黑碳气溶胶的浓度变化特征.结果表明:市区的年平均黑碳浓度要远大于郊区.日变化都呈明显的双峰结构,最大值出现在08:00~10:00,最小值出现在16:00左右;对于月最大频数浓度的年变化,市区和郊区均是5月黑碳浓度最小,其值分别为1143和932ng/m3,1月黑碳浓度最大,分别为10230和5063ng/m3;市区的周变化较郊区明显;沙尘条件下黑碳气溶胶浓度值低于当月的日均值.  相似文献   

2.
乌鲁木齐河源区黑碳气溶胶浓度特征及其来源分析   总被引:2,自引:0,他引:2  
利用七波段黑碳仪对2016年8月—2017年7月乌鲁木齐河源区大气中黑碳气溶胶进行了实时监测,并结合同时期气象资料对该区域黑碳气溶胶浓度变化特征、影响因子和可能来源进行了分析.结果表明,观测期间乌鲁木齐河源区黑碳浓度在102~1525 ng·m~(-3)之间变化,均值为520 ng·m~(-3).春季、夏季、秋季和冬季的浓度分别为425、536、686和427 ng·m~(-3),呈秋季最高,夏季次之,冬、春季低的季节变化特点.日内变化具有明显的双峰双谷特征,在当地时间8:00—9:00(与北京时间的时差为2小时,即为北京时间10:00—11:00,下同)和16:00—19:00有两个明显的峰值,可能与当地的排放和气象因素有关.乌鲁木齐河源区黑碳的本底浓度在春季、夏季和秋季分别为253、271和290 ng·m~(-3),而冬季黑碳的本底浓度仅为162 ng·m~(-3).与其他偏远地区相比,乌鲁木齐河源区因受较多排放源影响,黑碳浓度本底值较高.黑碳气溶胶浓度与气象因素相关性显著,当风速小于2 m·s~(-1)时,黑碳的平均浓度明显偏高,当相对湿度大于55%时,黑碳浓度明显偏低.由浓度权重轨迹分析和波长吸收指数(AAE)可知,乌鲁木齐河源区的黑碳浓度,除了受本地化石燃料燃烧和生物质燃烧排放的影响以外,还可能受到中亚地区远距离传输的影响.  相似文献   

3.
四川温江黑碳气溶胶浓度观测研究   总被引:4,自引:3,他引:4  
结合常规气象资料,对1999年9月至2000年8月在四川温江获得的黑碳气溶胶观测资料进行分析.结果表明,该地黑碳气溶胶浓度变化十分剧烈,日平均浓度在1200~20000 ng·m-3之间.其浓度日变化具有明显的双峰特征;季节变化表现为冬季1月最大,中值接近8000ng·m-3,5月也存在一个浓度高值.黑碳浓度及其变化特征与该地盆地性气候、降水湿清除和局地人为活动的影响有很大关系,由小时平均浓度最大出现频数统计分析得出该地区大气黑碳气溶胶本底浓度约为2850 ng·m-3.  相似文献   

4.
天津夏季黑碳气溶胶及其吸收特性的观测研究   总被引:12,自引:2,他引:10       下载免费PDF全文
利用天津城市边界层观测站2010年8月12日~9月18日期间的黑碳、污染物和气象梯度观测数据,分析天津市夏季黑碳气溶胶浓度的变化特征及其影响因子.结果表明, 观测期间,黑碳气溶胶浓度均值为6.309mg/m3,占PM10质量浓度的4.17%,其吸收消光占气溶胶总体消光的10.23%.受人类活动和边界层结构影响,黑碳气溶胶浓度日变化呈双峰型,7:00达到峰值,14:00~16:00最小,20:00达到次高峰.黑碳气溶胶浓度随风速增加呈下降趋势,当风速超过4m/s时,浓度一般低于5mg/m3,西风及西北风对天津城区黑碳气溶胶输送作用明显,其出现大于10mg/m3的高黑碳气溶胶事件概率为18.07%;逆温和大气稳定易造成黑碳气溶胶在近地层的堆积,形成高污染事件.  相似文献   

5.
南京北郊黑碳气溶胶污染特征及影响因素分析   总被引:6,自引:4,他引:2  
肖思晗  于兴娜  朱彬  何镓祺 《环境科学》2016,37(9):3280-3289
利用2015年1~10月黑碳小时平均质量浓度、PM2.5浓度、污染气体及常规气象观测资料,对南京北郊黑碳气溶胶的时间序列演变特征、污染特征及其影响因子进行了分析.结果表明,观测期间南京北郊黑碳浓度均值为(2 524±1 754)ng·m~(-3).黑碳浓度具有明显的季节变化,冬季最高,平均值达到(3 468±2 455)ng·m~(-3),春季平均值最低,为(2 142±1 240)ng·m~(-3);其日变化也具有明显的双峰结构,峰值出现在上午07:00~08:00和夜间21:00~22:00.黑碳气溶胶与NOx的相关性较好,说明黑碳浓度受机动车尾气排放的影响较大;但观测期间ΔBC/ΔCO比值较低,表明生物质燃烧可能是黑碳气溶胶的又一个重要来源.黑碳浓度随风速增加呈下降趋势,所有季节中小于2 000 ng·m~(-3)的低黑碳浓度主要集中在正西风及相邻风向上,秋冬季大于6 000 ng·m~(-3)的高黑碳浓度则多出现在偏东风下.灰霾和重度霾天气下的黑碳浓度平均值呈较高水平,是非霾天气下的2~2.3倍.  相似文献   

6.
安徽寿县黑碳气溶胶浓度观测分析研究   总被引:5,自引:2,他引:3  
为了研究中国东部典型乡村黑碳气溶胶浓度变化特征,利用2015年11月—2018年11月安徽寿县国家观象台污染物浓度及常规气象观测数据对该地区黑碳气溶胶浓度变化特征及其影响因子进行讨论.结果表明,3年间寿县黑碳气溶胶年平均浓度逐年递减,分别为2.84、2.10和1.31μg·m~(-3).季节变化特征显示,该地区冬季观测结果最高,为3.95μg·m~(-3),是夏季的2.9倍.日变化特征显示,日最大浓度值在春、夏、秋三季通常出现在6:00—10:00,而冬季则出现在20:00.从观测结果的日变化幅度来看,冬季的日变化幅度最大,日较差为1.53μg·m~(-3),春、夏两季次之,秋季最小,为0.48μg·m~(-3).由于人为活动影响小,寿县地区黑碳气溶胶的周末效应不明显.此外,统计结果表明,风向风速对该地黑碳气溶胶浓度的影响最大,西北风天气条件下观测结果通常较高,而其余气象因子的影响相对较小.  相似文献   

7.
本溪大气黑碳气溶胶浓度的观测研究   总被引:1,自引:0,他引:1  
对2008年3月至2009年2月本溪黑碳气溶胶浓度观测资料进行了研究分析.结果表明,本溪黑碳平均浓度值为6.877 μg/m3,日平均浓度变化范围为0.592~20.577 μg/m3,每小时平均浓度最大值达64.518 μg/m3;黑碳浓度具有明最的季节变化,夏季的平均浓度最低,最高值出现在冬季的1月份,这与冬季取暖...  相似文献   

8.
邯郸市黑碳气溶胶浓度变化及影响因素分析   总被引:2,自引:0,他引:2  
根据2013年3月—2017年2月邯郸市河北工程大学站点的黑碳气溶胶、PM2.5、大气污染物的小时浓度数据及常规气象数据,对邯郸市黑碳浓度的时间变化特征及影响因素进行分析.结果表明,4年来邯郸市黑碳浓度呈逐年下降的趋势:与2013年相比,2014—2016年黑碳气溶胶浓度分别下降了5%、16%、24%;邯郸市黑碳气溶胶浓度的季节变化趋势基本一致且季节变化特征明显,冬季黑碳气溶胶浓度最高,秋季次之,春夏两季最低,其中,冬季平均浓度分别是春、夏、秋季的2.07、2.77、1.49倍;其日变化呈单峰单谷状,且4个季节的日变化趋势相同,峰值均出现在6:00—8:00,谷值均出现在14:00—15:00.黑碳与PM2.5的相关系数r为0.860,相关性显著,说明黑碳气溶胶和PM2.5的来源大部分是一致的;风速和风向对黑碳气溶胶浓度也有影响,黑碳气溶胶浓度随风速增加而降低;4个季节高频风向为南-西南方向,且该风向下黑碳气溶胶浓度均较高,冬季南-西南风向下的黑碳浓度最高;应用后向轨迹对研究时段内4段重污染期间的气流轨迹进行模拟发现,邯郸市黑碳气溶胶浓度较高的主要原因是本地源排放和近距离传输,远距离传输贡献较小.  相似文献   

9.
杭州市区大气气溶胶吸收系数观测研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用2011年6~8月和2011年12月~2012年2月杭州国家基准气候站内黑碳及气象观测资料,分析了杭州市区气溶胶吸收系数的变化特征.结果表明,杭州市区气溶胶吸收系数冬季[(42.3±17.7)Mm-1]要高于夏季[(35.8±10.5)Mm-1],且冬季气溶胶吸收系数变化较为剧烈.在边界层变化以及人类活动的共同影响下,气溶胶吸收系数呈现明显的双峰型日变化特征,峰值出现在07:00~09:00,谷值出现在14:00,次峰值出现在19:00~20:00.通过拟合小时平均值最大出现频率得出该地区气溶胶吸收系数本底值为24.7Mm-1.霾时气溶胶吸收系数要高于非霾时,随着霾污染的加重,气溶胶吸收系数呈现阶梯上升趋势.霾期间气溶胶吸收系数的增加是造成能见度下降的重要原因之一.  相似文献   

10.
成都市黑碳气溶胶污染特征及与气象因子的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
孙欢欢  倪长健  崔蕾 《环境工程》2016,34(6):119-124
为系统了解成都市黑碳气溶胶(BC)的污染特征,利用四川省环境监测站提供的成都市人民南路四段2013年9月至2014年7月逐时BC监测数据,对其浓度进行了统计分析。结果表明:1)BC小时平均浓度变化范围较大,介于0.01~57.83μg/m3,浓度中值(5.17μg/m3)小于平均值(7.32μg/m3),即BC小时浓度具有偏态分布特征。2)BC日均浓度变化范围为2~28.2μg/m3,其浓度日变化在四季均呈明显的单谷型,谷值出现在16:00时附近,表现为从凌晨到10:00时变化较平稳,10:00—16:00时浓度急剧下降,16:00到夜间浓度急剧上升;浓度季变化呈现出冬高夏低,春秋平稳的基本特征。3)秋、冬、春、夏四季BC本底浓度值分别为2.49,5.05,2.89,2.43μg/m3。4)BC质量浓度与PM2.5和PM10变化趋势一致,BC浓度相对颗粒物浓度变化较快,在0.01水平上与PM2.5和PM10均呈显著正相关,相关系数分别为0.657、0.638,与温度、降水和风速均呈负相关,相关系数分别为-0.334,-0.338,-0.202。  相似文献   

11.
利用阿克达拉大气本底站2011~2017年黑碳气溶胶(BC)逐小时质量浓度资料和同期气象数据,采用后向轨迹聚类分析、潜在来源贡献函数法(PSCF)和浓度权重轨迹分析法(CWT),研究了阿克达拉站BC不同时间尺度浓度特征和潜在源区.结果表明:阿克达拉站2011~2017年BC呈波动下降趋势,BC清洁程度较高;BC浓度呈春冬高,夏秋低的季节变化特征,春季(398.85±189.35) ng/m3>冬季(389.89±105.94) ng/m3>夏季(272.07±90.07) ng/m3>秋季(269.52±68.07) ng/m3,自然因素为BC浓度变化的主要原因;日变化特征表现为白天低、夜间高,基本呈单峰分布;阿克达拉站BC潜在源随季节变化差异明显,后向轨迹,WPSCF和WCWT分析都表明,春季潜在源集中于俄罗斯南部与新疆交界处的阿尔泰山北麓,秋季潜在源为新疆北疆经济带,冬季BC多受境外排放源影响.BC污染控制需要区域环境合作,实现联防联治,尤其是加强跨境污染源监测工作.  相似文献   

12.
南京北郊大气细粒子中黑碳气溶胶的观测研究   总被引:10,自引:1,他引:9  
运用2008年11月至2010年4月在南京北郊大气细粒子中黑碳气溶胶的观测结果,研究黑碳的时间序列演变特征、污染状况、与气体的非均相关系等.结果表明,黑碳气溶胶的日均浓度为1114~19408 ng·m-3,局地人为活动与气象条件的改变等因素导致黑碳气溶胶日变化呈双峰形;黑碳气溶胶小时平均浓度频数统计和对数正态分布拟合...  相似文献   

13.
黑碳(BC)作为最重要的吸收性气溶胶,其辐射强迫显著地改变大气边界层结构和近地面大气污染物的累积。基于2008~2018年武汉市BC和气象要素的观测数据,结合CWT潜在来源模型,分析了BC的时间演变特征和潜在来源分布。结果表明武汉BC平均质量浓度为6 926.4±4 090.6 ng/m3,Ångström指数(AAE)和液体燃料源对BC贡献占比(P)的平均值分别为0.98±0.44和76.6%,BC主要来自液体燃料的燃烧。2014~2017年BC质量浓度呈现显著的下降趋势,液体燃料对BC的贡献逐年增加。BC的季节分布为冬季(8 537.3 ng/m3)>春季(7 513.2 ng/m3)>秋季(6 820.2 ng/m3)>夏季(6 161.9 ng/m3),BCliquid占比为秋季(80.0%)>冬季(77.3%)>春季(76.2%) >夏季(72.9%)。不同季节BC日变化特征不同。四个季节BC日变化在2008~2013年均以单峰型分布为主,而在2016~2017年则为双峰型分布。不同季节BC的潜在来源分布存在显著区别。潜在来源高值区在2008~2010年主要分布于武汉市的西南部,范围较小;而2016~2017年主要集中在武汉市周边地区,范围变大。潜在源区的演变反映了周边城市群对武汉市BC的影响逐渐变大,这可能是造成武汉市BC质量浓度日变化的年际差异的原因。  相似文献   

14.
东莞与帽峰山黑碳气溶胶浓度变化特征的对比   总被引:4,自引:0,他引:4       下载免费PDF全文
将东莞(海拔30m,位于平原地区)与帽峰山(海拔550m,位于山地地区)的黑碳气溶胶(BC)浓度进行对比,结果表明,东莞地区BC浓度年均值为5.27mg/m3,帽峰山BC浓度值为2.43mg/m3,两个站点的浓度都比位于珠三角核心区的南村站浓度(8.42μg/m3)低.雨季,东莞与帽峰山BC浓度的日变化特征在中午呈现反位相,这是因为两站近地层受上升气流控制,热对流把地面的BC气溶胶带至高空,地面浓度下降,东莞出现谷值,而高空有了地面的垂直输送补充,帽峰山出现峰值.旱季,华南地区受高压控制,微弱下沉气流对于BC的垂直输送不利,BC的扩散以平流扩散为主,两地日变化情况相近.此外,受BC源远近的影响,东莞的逐月变化(标准差为0.60μg/m3)大于帽峰山(标准差为0.14 μg/m3).通过分析BC吸收系数的波长幂指数α探讨可能的污染来源,发现两地的α值均接近于1,说明两地BC的污染来源相同,均来自于化石燃料的燃烧.  相似文献   

15.
辽宁地区大气黑碳气溶胶质量浓度在线连续观测   总被引:4,自引:1,他引:3  
利用2008年3月—2009年2月辽宁沈阳、大连、鞍山、抚顺和本溪ρ(黑碳)观测资料,分析了其变化特征及重要影响因子. 结果表明,5个城市小时ρ(黑碳)的变幅较大,最小值出现在抚顺秋季的2008年9月23日00:00,ρ(黑碳)为0.14 μg/m3,最大值出现在本溪冬季的2008年11月11日08:00,ρ(黑碳)为64.52 μg/m3;本溪ρ(黑碳)日均值最高,为6.87 μg/m3,其次是沈阳、鞍山和抚顺,大连的ρ(黑碳)日均值最小,为3.18 μg/m3;ρ(黑碳)日变化有明显的峰值和谷值,最高值一般出现在06:00─09:00和17:00─19:00,低值出现在02:00─04:00和12:00─15:00;风速对ρ(黑碳)有重要影响,当风速<3.5 m/s时,ρ(黑碳)随风速增大而减小,当风速>3.5 m/s时,风速对ρ(黑碳)的影响不大;后向风轨迹较好地反映污染物在不同城市区域间的传输特征,在冬季沈阳以上风区域北部影响为主;ρ(黑碳)日均值变化和大气低层垂直温度梯度变化有较好的对应关系.   相似文献   

16.
利用2016年中国气象局设于长江三角洲地区的上海崇明东滩(DT).上海浦东(PD),安徽寿县(SX),浙江临安(LA)和浙江洪家(HJ)5个站点的BC观测资料,结合气象资料和污染物数据等,对该地区BC特征和来源展开研究.上海东滩,上海浦东,安徽寿县,浙江临安和浙江洪家5个站点BC年平均浓度分别为(1834±1713),(2410±1537),(2823±1759),(2651±1518)和(2544±1399)ng/m3.上海东滩浓度较低,其他站点较为接近.各站点BC都有明显的季节变化.上海崇明东滩冬季BC浓度高于其他季节.其他4个站点都是冬季 > 春季 > 秋季 > 夏季.上海东滩四季BC日变化不明显,而其他站点四季BC浓度日变化的高值都出现在交通高峰期(06:00~09:00,18:00~21:00).上海浦东,安徽寿县,浙江临安和浙江洪家BC主要来源于机动车尾气排放和燃煤.所有站点风速较低(风速<3m/s),BC受风速影响显著,风速越大,BC浓度越低.相对湿度在50~60之间,BC平均浓度最高.潜在源区贡献(PSCF)的分析结果显示,冬夏两季长江三角洲5个站点BC潜在源区主要集中在江苏,安徽和浙江等地.  相似文献   

17.
Black carbon (BC) concentration and meteorological data are measured discontinuously from May 2009 to March 2011, at the Qilian Shan Station of Glaciology and Ecologic Environment (hereafter “QSSGEE”), located near the terminal of the Laohugou No.12 Glacier in northwestern Qilian Shan, China.We measured the daily, monthly and seasonal variations of BC concentration in the atmosphere and discussed the possible emission sources. Black carbon background concentration in this region varied in the range of 18-72 ng/m3 with the highest in summer and the lowest in autumn. The relations between BC concentration and surface wind direction indicated that BC concentration was higher when northwest wind prevails while lower when southeast wind prevails. Air masses backward trajectories showed the potential emission sources in the northwest. Significant positive correlations between daily mean BC concentration and relative humidity indicated that BC might be one of important cloud condensation nuclei. This hypothesis needs to be confirmed further through cloud microphysical features in this region.  相似文献   

18.
2008北京残奥会期间大气黑碳气溶胶污染特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用单颗粒黑碳光度计(SP2)对2008年残奥会期间北京市黑碳(BC)气溶胶的质量浓度、粒径分布及单颗粒混合态进行连续在线观测.结果表明:观测期间BC浓度均值为1.65μg/m3,低于往年同期水平;质量粒径分布呈单峰型,峰值位于207nm;内混态BC比例平均为56.1%,高于其他国内外城市,说明本地源排放贡献相对较小.随大气边界层高度及本地源排放变化,BC浓度在上午8:00和午夜0:00出现2个峰值,内混态BC比例日变化趋势与之相反.风向风速分析表明,残奥会期间来自五环外未限行区域的机动车排放对市区BC浓度有明显影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号