首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
龙岩市大气颗粒物来源统计分析   总被引:8,自引:0,他引:8       下载免费PDF全文
通过采样和分析,对龙岩市大气颗粒物10种主要源样品进行了富集因子分析和R型聚类分析.结果表明:各类源样品的成分谱具有显著差异,对不同元素的富集程度各不相同,但对金属元素的富集程度均较高.高岭土矿中W的富集因子为255.32, Bi的富集因子为520.12,红土壤中Bi的富集因子为173.41,小煤炉灰中Sb的富集因子为119.98,以机动车尾气、钢铁厂及燃煤等的贡献为主;龙岩市大气颗粒物的来源可以分为4个类型,即道路尘及土壤风沙尘类,建筑水泥尘类,金属冶炼及钢铁厂尘类和饲料厂尘类别.  相似文献   

2.
用小流量TSP采样器对佛山市4家陶瓷企业内无组织排放特征明显的车间TSP进行了测定,并采用ICP-MS技术对TSP的金属元素成分进行了分析,测试结果中,共有43种金属元素被检出,各车间内主要金属元素浓度值较高。TSP中金属元素富集因子的研究结果表明,共有11类元素富集值大于10而出现了富集的特征,另有14个元素富集值低于1。以元素富集因子进行的聚类分析,除8种富集元素外,35种金属元素聚集成一个大类群。  相似文献   

3.
2017年11月至2018年3月,对北京市延庆区PM_(2.5)中金属元素组分研究,分析金属元素富集程度并确认其主要来源。结果表明:监测期间PM_(2.5)中金属元素平均浓度5.93μg/m~3,约占PM_(2.5)质量的10.8%,前6位的元素为地壳元素;金属元素在PM_(2.5)中的占比随空气污染程度加重而下降。金属元素中Cd、Sc和Se的变异系数为1.33、1.66和3.56,数据离散性较大,人为活动对其贡献较大。Cu、Sc、Pb、Zn的富集因子介于10和100之间,Cd、Se的富集因子介于100和1000之间,受人为污染源影响。采暖季土壤和地壳源对PM_(2.5)中金属元素的贡献率最大,为43.46%;燃煤和建筑源,贡献率15.46%;机动车轮胎和机动车尾气排放统称为机动车源,贡献率为16.98%;工业污染源贡献率为5.8%。富集因子和主因子分析的金属元素中人为污染来源结果一致。  相似文献   

4.
乌鲁木齐市大气颗粒物中重金属浓度的分布特征   总被引:3,自引:0,他引:3  
从2009年7月-2010年4月,在乌鲁木齐市新疆大学设置采样点采集大气PM2.5~10和PM2.5。采用双道原子荧光光谱法分析了样品中的7种重金属元素,对采样期间可吸入颗粒物及重金属的浓度进行了分析,并对重金属的污染水平进行了评价。结果表明:PM2.5质量浓度的日平均值为222μg/m3,超过美国EPA1997年颁布的PM2.5日平均值35μg/m3的6.4倍;PM2.5~10和PM2.5中7种金属元素的浓度从高到低的顺序为Cr>Pb>Mn>Cu>Ni>As>Hg;PM2.5~10和PM2.5中Mn的污染指数Igeo≤1为无污染,Cu污染指数:3≤Igeo≤4为重污染,Ni、Cr、As污染指数:4≤Igeo≤5为重污染至严重污染,Pb、Hg的污染指数:Igeo≥5为严重污染。以Fe作为参考元素计算重金属的富集因子表明,自然来源的Mn具有较小的富集因子,而受工业活动影响的Cr、Pb、Ni、Cu、Hg、As具有较大的富集因子,可以认为大气可吸入颗粒物中重金属的主要来源于工业活动。  相似文献   

5.
为了探究新乡地区年际间冬季PM2.5组分的变化特征和污染来源,于2015年冬季和2016年冬季分别在新乡市区进行连续1个月的膜采样,测定PM2.5质量浓度、金属元素含量及其水溶性离子成分含量,并结合气象因素进行分析。结果表明,新乡地区2015年和2016年冬季采样期间PM2.5的质量浓度日均值分别为226μg·m-3和224μg·m-3,污染水平较高。观测期间,新乡冬季PM2.5中Cd和Pb金属元素富集明显,富集因子超过1000。且与2015年相比,2016年金属元素(除Ag和Ni)中浓度下降约7.83%~73.33%,富集程度均趋于降低。水溶性离子以SO42-、NO3-和NH4+这3种为主,2016年在PM2.5中占比上升25.1%。综合两种成分分析,新乡地区的PM2.5污染呈现出金属污染向二次水溶性离子污染转移的趋势。综合PCA和PMF源解析结果显示,新乡市冬季有4种主要排放源,即尘土、二次源、工业源和化石燃料燃烧源,2015年冬季主要来源是土壤和建筑扬尘混合源,贡献率37.46%,2016年主要来源是交通及工业生产中的二次气溶胶污染源,贡献率为34.94%。  相似文献   

6.
为了探究新乡地区年际间冬季PM_(2.5)组分的变化特征和污染来源,于2015年冬季和2016年冬季分别在新乡市区进行连续1个月的膜采样,测定PM_(2.5)质量浓度、金属元素含量及其水溶性离子成分含量,并结合气象因素进行分析.结果表明,新乡地区2015年和2016年冬季采样期间PM_(2.5)的质量浓度日均值分别为226μg·m~(-3)和224μg·m~(-3),污染水平较高.观测期间,新乡冬季PM_(2.5)中Cd和Pb金属元素富集明显,富集因子超过1000.且与2015年相比,2016年金属元素(除Ag和Ni)浓度下降约7. 83%~73. 33%,富集程度均趋于降低.水溶性离子以SO_4~(2-)、NO_3~-和NH_4~+这3种为主,2016年在PM_(2.5)中占比上升25. 1%.综合两种成分分析,新乡地区的PM_(2.5)污染呈现出金属污染向二次水溶性离子污染转移的趋势.综合PCA和PMF源解析结果显示,新乡市冬季有4种主要排放源,即尘土、二次源、工业源和化石燃料燃烧源,2015年冬季主要来源是土壤和建筑扬尘混合源,贡献率37. 46%,2016年主要来源是交通及工业生产中的二次气溶胶污染源,贡献率为34. 94%.  相似文献   

7.
上海市大气颗粒物中金属元素特征   总被引:11,自引:0,他引:11  
分析上海市5个采样点,1986年至1987年连续12个月的大气颗粒物样品中的11种金属元素含量。结果表明,市区各功能区之间,以及各个季节之间,元素分布特征差异;细粒子中的重金属元素主要受局部地区工业源和气象条件的影响;与其它城市相比,上海市大气颗粒物中的重金属元素含量高数倍;通过粒径-成份以及富集因子分析,探讨了这些元素的来源。  相似文献   

8.
珠江三角洲大气干沉降金属元素浓度和来源分析   总被引:2,自引:0,他引:2  
本文对珠三角地区137个大气干沉降样品中金属元素含量和来源进行了分析。金属元素几何平均浓度高低依次为Fe>Zn>Mn>Pb>Cu>(Ni,Cr,Rb)>V>(Li,Y)>Co>(Cd,Cs)>Tl,其中Fe的浓度最高为31573mg/kg,Tl的浓度最低为1.0mg/kg,金属元素浓度主要与周边环境和当地发展类型影响有关,采样点位于工业区周边的金属元素浓度最高,城市居民区和近郊区次之,远离城市和工业地区的相对较低。富集因子分析表明Cd、Zn、Cu、Ni和Pb元素受人类活动影响显著,污染严重;相关性分析得出Cu、Pb、Zn具有显著性相关,Cr、Ni分别与Mn、Co、Li、Zn显著性相关,表明它们可能具有相同来源;因子分析得出Rb、Cs、Y、Mn、Ni、Li、Co主要受到土壤扬尘来源的影响,Pb、Cu、Cd及Ni、Cr与当地工业化和城市化过程密切相关,其中Pb元素主要受到燃煤和交通扬尘的污染,Cu和Cd元素主要来源于工业生产中产生的重金属污染。  相似文献   

9.
北京冬季PM2.5中金属元素浓度特征和来源分析   总被引:6,自引:2,他引:4  
为了解北京冬季细颗粒物中金属元素的浓度水平及其来源,于2014年12月至2015年1月使用中流量PM_(2.5)采样器在北京城区开展了为期30 d的连续采样,采用滤膜称重法检测PM_(2.5)浓度,电感耦合等离子体质谱法(ICP-MS)分析PM_(2.5)中16种元素总量,并采用富集因子法和因子分析法分析元素污染特征及其来源.结果表明,观测期间PM_(2.5)中主要金属元素为K、Ca、Fe、Al和Mg,占16种元素总量的90.7%.与白天相比,地壳元素如Mg和Al等在夜间的浓度下降30%以上,而人为源金属元素如Cu和Pb等的浓度则上升40%以上.从优良天到重污染天气,上述16种金属元素的总浓度上升1倍,但其在PM_(2.5)中的比例却逐渐降低,说明金属元素的富集不是PM_(2.5)上升的主要原因.随着污染程度的加剧,Cu、Zn、As、Se、Ag和Cd等主要来自人为源的金属元素浓度上升较快,重度污染天与优良天的浓度比值范围为2.9~5.3;而Al、Mg、Ca、Mn和Fe等地壳元素浓度上升则较缓,重度污染天与优良天的浓度比值范围为1.2~1.8.北京冬季PM_(2.5)中金属元素主要来源于燃煤和生物质燃烧、交通和工业排放以及地面扬尘,贡献率分别为34.2%、25.5%和17.1%.  相似文献   

10.
于山东省菏泽市采集了2017年10月15日至2018年1月31日期间菏泽学院、华润制药和污水处理厂共3个采样点的大气PM2.5样品,利用电感耦合等离子体质谱仪(ICP-MS)测定PM2.5中21种金属元素的浓度,并讨论元素富集程度、评估重金属的健康风险和潜在生态风险.结果表明,采样期间3个采样点中ρ(PM2.5)范围为26.7~284.1 μg·m-3且浓度值差别不大,均处于较高污染水平;3个采样点金属元素中K浓度最高,分别占总量的31.03%、39.47%和38.43%,主要由于菏泽作为较大农业城市,其秋冬季生物质燃烧贡献率较高;3个采样点微量元素中ρ(Zn)最高,分别为89.70、84.21和67.68 ng·m-3.富集因子结果表明,Zn、Pb、Sn、Sb、Cd和Se的富集因子值均高于100,其中Cd和Se的富集因子分别高于2 000和4 000,受人为活动影响显著,可能与工业生产、金属冶炼、道路源和燃煤排放等有关.健康风险结果表明,As存在一定的潜在非致癌风险(儿童和成人HQ>0.1),3个采样点对儿童和成人均存在综合潜在非致癌风险(HI>0.1)和一定的潜在致癌风险(CRT>1×10-6),其中污水处理厂对成人的致癌风险较为显著(CRT>1×10-4),成人的致癌风险略高于儿童可能与成人室外活动时间较长和PM2.5暴露量更高有关.潜在生态风险值最高的元素为Cd、As和Pb,其中Cd表现为极高的潜在生态风险,应引起重视;3个采样点均呈现出极高的综合潜在生态风险,强度在空间上表现为:菏泽学院>华润制药>污水处理厂.  相似文献   

11.
用因子分析法解析抚顺市大气可吸入颗粒物来源   总被引:2,自引:0,他引:2  
本文应用因子分析法分别对2002年1月和7月在抚顺4个采样点采集的PM10样品进行污染物来源的定性和定量分析.分析结果表明,在此基础上得出抚顺市PM10样品主要污染来源是土壤扬尘和燃煤烟尘.  相似文献   

12.
利用中流量空气颗粒物采样器在武汉市青山区进行连续采样,分析了2013年冬季大气PM_(2.5)的质量浓度,并采用ICP-AES方法研究了样品中19种金属元素的组成和特征。结果表明,PM_(2.5)质量浓度为47~353μg/m~3,参照《环境空气质量标准》(GB 3095-2012)中的二级标准,其中88.6%的样品质量浓度超标;富集因子分析结果表明Ca、Cu、Pb、Zn、Cd、Ni、Mn、Ti、V、As和Hg在PM_(2.5)中明显富集,主要来自人类活动;运用正定矩阵因子分解法(PMF)对PM_(2.5)来源进行了解析,结果表明交通源,工业源,路面扬尘,燃煤源和建筑源是武汉市青山区冬季PM_(2.5)的主要来源。  相似文献   

13.
选择南京某居民区采样点,于2014年春节前后,采集大气PM_(2.5)样品,分析其中的V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Ba、Sb和Pb等12种金属元素,结合富集因子、聚类分析和主成分分析对其来源进行了探讨,并采用健康风险评价模型对其危害进行评估.结果表明:春节期间大气PM2.5的平均浓度相比春节前上升11.4%,春节后相比春节期间下降31.1%.V、Cr、Mn、Ni、Cu、Zn、As、Cd、Sb和Pb的平均浓度相比春节前下降了5.5%(V)~56.7%(Zn).PM_(2.5)及其载带元素浓度的变化反应了节日前后工厂、机动车排放及烟花燃放等污染源的变化.春节期间Ba平均浓度相比节前增加了16.2倍,而在节后下降了94%,表明节日期间的烟花燃放是Ba的一个重要来源.富集因子和地累积指数分析显示,Cd、Sb、Pb、Cu、Zn、As、Ni和Ba属于重度富集元素,其富集因子范围为21~2259.主成分分析和聚类分析表明,金属冶炼和燃煤、烟花燃放和机动车尾气、工业过程是采样期间重金属的主要来源,贡献率分别为57.5%、12.4%和9.9%.风险评价结果表明致癌性元素(Cr、Co、Ni、As和Cd)的风险指数分别为2.0×10~(-6),8.9×10~(-9),1.3×10~(-8),1.9×10~(-7)和7.7×10~(-9).除Cr外,其它值均低于致癌风险阈值范围(10~(-6)~10~(-4)),处于可接受水平.  相似文献   

14.
该研究根据2019年1月-2020年2月东莞城区大气超级站PM_(2.5)中金属元素(Pb、Cd、Cr、Ni、As等15种)的在线监测数据,分析其污染特征与富集程度,并评估疫情防控期间的变化。结果显示:东莞城区大气PM_(2.5)中金属K、Fe、Ca、Al和Zn含量相对较高。K、Fe、Al、Ca、Zn、Pb、Mn、Cu、As和Se的月均浓度高值主要出现在11月、12月和1月。K、Pb、Cu、As、Ba和V日变化规律总体呈夜间高-白天低特征;Al、Fe、Zn、Ca和Mn则在早晚通勤交通高峰期间出现双峰。以Al为参比,除Ba和Fe外,其他元素富集因子均10,富集明显;其中Cd、Se、Zn、Cu、As和Pb的富集因子大于100,富集非常严重。东莞大气总金属元素潜在生态危害程度为很强,Cd贡献为主。与2020年防控前和2019年同期相比,2020年疫情防控期12种以上元素浓度均有不同程度的下降;除K和Ba外,12种元素的富集因子亦显著下降,受人类活动影响程度剧减;疫情防控期大气总金属元素潜在生态危害较2019年同期相比下降14.8%。  相似文献   

15.
郝娇  葛颖  何书言  卢娜  王勤耕 《中国环境科学》2018,38(12):4409-4414
在南京市仙林地区,采用ANDERSON八级撞击采样器,于2016年秋季采集了63个大气颗粒物有效样本,并利用ICP-MS分析了金属元素的含量.结合气象等资料,研究了大气颗粒物金属元素的粒径分布与富集特征,并对其来源进行了探讨.结果表明:南京秋季大气颗粒物质量浓度的粒径分布呈双峰型,峰值分别位于0.4~1.1和3.3~9μm;金属元素的粒径分布呈3种类型,一是粗粒子单峰型,峰值位于3.3~5.8μm,主要元素包括Na、Al、Ca、Mg、Co、Ce、Sr和Ba;二是细粒子单峰型,峰值位于0.4~1.1μm,主要元素包括Zn、As、Cd、Ag、Tl和Pb;三是粗细粒子双峰或多峰型,峰值位于1.1和5μm粒径段,主要元素包括K、Se、Li、Be、Mn、V、Cu、Cr、Ni和Fe.按富集因子的大小,可将元素分为3类,低富集元素包括Ba、Ca、Ce、Sr、Mg、Fe、Co、Mn、Be和V,中富集元素包括Li、Na、Ni、K和Cr,高富集元素包括Cu、Tl、Zn、As、Pb、Ag、Cd和Se.不同的粒径分布和富集水平反映了大气颗粒物的来源特征.研究结果可以为深入认识大气颗粒物金属元素的来源及其环境与健康效应提供科学依据.  相似文献   

16.
为了研究郑州市某生活区大气重金属元素的污染特征,对郑州市某生活区进行潜在生态风险和居民健康风险的评估,利用武汉天虹TH-16A型大气颗粒物智能采样仪对郑州市某生活区大气PM_(2.5)样品进行采集,并用波长色散X射线荧光光谱法(ambient air determination of inorganic elements in ambient particle matter wavelength dispersive X-ray fluorescence spectrometry,WD-XRF)分析17种金属元素的质量浓度;用富集因子法、主成分分析法对重金属的来源进行解析;用生态风险指数法和美国环保署的健康风险评价法分别对Cr、Cd、Cu、Zn、Ni、Pb和As等元素的潜在生态风险、居民健康风险进行评估.结果表明,富集因子(enrichment factor,EF)值较高的金属为Cd、Sb、Pb和As,其中Cd的富集因子值最高,为8 657. 6;郑州市某生活区金属元素的来源主要为地壳源/燃煤源、燃油源、垃圾燃烧源、冶金尘源和机动车排放源; Cd、Pb、Zn、As、Cu、Ni和Cr的单因子潜在生态危害指数值分别为70 420. 2、255. 3、204. 6、71. 5、36. 9、24. 0和5. 1;郑州市某生活区的Cd、As和Cr具有致癌风险,Cd的危害最大; Mn具有非致癌风险.  相似文献   

17.
《环境科学与技术》2021,44(1):198-206
利用大气重金属分析仪(Amms-100)获取宝鸡市高新区2020年3月1日-4月24日PM_(2.5)中金属元素的逐时数据,结合气象因素分析PM_(2.5)及其金属元素的日变化特征,并运用富集因子和正矩阵因子分解法探讨金属元素的来源。结果表明,高新区春季PM_(2.5)质量浓度为(51.5±25.2)μg/m~3;金属元素的平均质量浓度为4.6μg/m~3,约占PM_(2.5)的8.9%。日变化中,K、Al、Fe、Ca和Ba呈"双峰"分布;Zn、Pb和Co呈"单峰"变化。富集因子分析显示,Zn和Pb的EF值40,主要来自人为源;Ca、Fe和V的EF值1,主要来自于地壳;Cr、Cu、Mn和Ba的EF在2~5之间分布,受自然和人为两大来源共同作用。源解析结果表明,春季金属元素主要来源于扬尘源(44.3%)、交通源(26.5%)、工业源(20.9%)和燃烧源(8.3%)。  相似文献   

18.
为了了解金属元素的污染特征和潜在来源,以及重金属元素的风险水平,本研究于2015年4月至2016年1月采集了厦门海沧区不同类型站点四季大气PM_(2.5)样品348份,用X射线荧光分析仪(XRF)测定了其中K、Ca、Na、Mg、Al、Zn、Cu、Fe、Ti、As、V、Mn、Ba、Co等14种金属元素的质量浓度.本研究分析了码头、生活区、工业区和背景区这4个类型站点PM_(2.5)中金属元素的时空分布特征,综合利用富集因子法和健康风险评价模型进行了金属元素的污染评价,并采用相关性分析、主成分分析和后向气团轨迹初步探讨了金属元素的来源.结果表明,采样期间厦门海沧区PM_(2.5)中14种金属元素总质量浓度在PM_(2.5)中的占比为5.4%~10.6%.金属元素总质量浓度的时空变化特征与PM_(2.5)的较为一致,均表现为春冬季浓度高于夏秋季,海润码头和新阳工业区高于海沧分局和市委党校.而夏季海润码头和海沧分局PM_(2.5)日均值超标率较高的现象,与海润码头作业以及风向有关.新阳工业区Zn的质量浓度最高,市委党校次之;海润码头V的质量浓度最高,夏季海沧分局易出现V的浓度高值;均说明污染源站点(新阳工业区和海润码头)排放的污染物对其附近站点的金属元素质量浓度产生了影响.K质量浓度冬季最高,As超标现象出现在冬季和春季,说明冬季生物质燃烧以及燃煤等燃烧排放对大气污染的影响较为严重.Cu、Zn、As、Co、Na和Mn在各站点的富集因子范围为67~8449,富集均较严重.非致癌重金属Zn、Cu、Mn风险值之和低于一般可接受的风险水平(1×10~(-6)a~(-1)),其中Mn对总风险值的贡献范围为74%~88%.综合相关性分析和主成分分析结果表明,厦门海沧区PM_(2.5)中金属元素主要来源于地面扬尘、机动车排放、燃煤和工业排放以及船舶排放,各来源分别可以解释变量的34.5%、12.5%、10.6%、7.8%.后向气团轨迹表明春、秋和冬季均受到局地气团的影响,而夏季气团运动相对较强;春冬季途经长三角内陆的气团可能导致PM_(2.5)浓度偏高.  相似文献   

19.
为了研究城市大气PM2.5中重金属的污染特征和来源,于2017年的7月和10月及2018年的1月和4月,利用在线金属分析仪对郑州市大气PM2.5中的21种元素进行在线检测,分析了重金属浓度变化;通过富集因子、主成分分析和潜在源贡献等方法对重金属进行溯源;采用环境健康风险评价模型评估其健康风险.结果表明,K、 Zn、 Mn、 Pb、 Cu、 As、 Cr和Se的浓度随污染等级的提高而增加;富集因子和主成分分析法结果表明,重金属主要来源为地壳源、混合燃烧源、工业源和机动车源;雷达特征图表明,地壳源主导的污染主要发生在春、冬两季,混合燃烧源主导的污染主要发生在冬季;Pb、 As和Ni受汾渭平原、京津冀和河南南部的传输影响较大,Cd受采样点西北部影响较大;As对成年人和儿童均有显著致癌风险,Pb和Sb对儿童存在显著非致癌风险.  相似文献   

20.
沈阳市夏秋季节大气细颗粒物元素浓度及分布特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为获得沈阳市不同功能区细颗粒物元素的浓度和分布特征,于2007年8月21~9月6日,用安德森分级撞击式采样器在沈阳市4个采样点进行大气颗粒物分级采样,并用电感耦合等离子体质谱仪(ICP-MS)对PM1中50种元素进行分析.通过富集因子和经验正交函数分析,讨论了沈阳市夏秋季节细颗粒物中元素的组成及来源.结果表明,沈阳市夏秋季节PM1浓度明显比冬季低,且低于广州、北京等国内城市的浓度,但比青藏高原冰川区的浓度高1个量级以上,也高于意大利热那亚和佛罗伦萨等城市.沈阳市不同功能区PM1的污染程度为铁西工业区>气象局商业居民区>科研所交通餐饮区>棋盘山风景区;富集因子和经验正交函数分析表明,除自然源外,各功能区污染来源有所不同,交通运输、道路扬尘、餐饮业和工业的排放均对PM1有重要贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号