首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
采用现场调查和室内分析相结合的方法,于2018年12月(枯水期)与2019年5月(丰水期)分别分析了拉鲁湿地的水质,并采用改进的内梅罗污染指数法对2个时期的水质现状进行了评价。结果表明:在枯水期,TN、TP和NH3-N分别为0.157~26.797,0.003~4.259,0.197~24.084 mg/L;pH、电导率和溶解氧分别为6.99~9.55,72.85~583.50μS/cm和1.83~12.84 mg/L。在丰水期,TN、TP和NH3-N分别为0.077~3.104,0.004~0.228,0.005~0.094 mg/L;pH、电导率和溶解氧分别为6.94~9.27,129.90~512.87μS/cm和1.12~12.18 mg/L。拉鲁湿地枯水期水体的电导率平均值低于丰水期,但枯水期的溶解氧、pH、TN、TP、NH3-N和COD的平均值高于丰水期;电导率与pH呈极显著负相关(P<0.01),与NH3-N和TP呈极显著正相关(P<0.01)。改进的内梅罗污染指数法表明拉鲁湿地枯水期水质大部分为Ⅴ类,其受污染区域主要分布在东北部,丰水期水质主要为Ⅰ和Ⅲ类,其水质污染区域主要分布在中南部。  相似文献   

2.
以李家河水库上游水体为研究对象,运用三维荧光光谱法解析水体溶解性有机物(DOM)的来源和特性,并探讨了DOM组分干湿季变化特征及影响因素.结果表明,李家河水库上游水体DOM由3个荧光组分组成,分别为类络氨酸(220nm,270nm/300nm)、UVA类腐殖质(250nm/430nm)和类色氨酸(225nm,280nm/335nm),其中类络氨酸为主要组分,但其含量干湿季变化不大,而UVA类腐殖质和类色氨酸含量呈现出显著的季节差异.荧光特征指数表明,李家河水库上游水体DOM的来源具有显著的陆源特征,其特征在湿季更加显著.水体DOM各荧光组分在干湿季均与TP呈正相关;在湿季,类络氨酸组分与Chl-a、浊度和CODMn呈正相关,而在干季无相关性.UVA类腐殖质与DOC在干湿季均存在正相关关系,且在湿季相关性(P<0.01)大于干季(P<0.05).类色氨酸与CODMn相关性也表现出湿季(P<0.01)大于干季(P<0.05)的特征.  相似文献   

3.
为探讨农村居民区沟塘水质对周边浅层地下水的影响,在河南省某县选择典型沟塘,分别在枯水期和丰水期采集沟塘水和周边浅层地下水样品,采用高效液相色谱检测16种多环芳烃(PAHs)的含量,分别描述并比较枯丰水期PAHs的污染特征及其生态与健康风险.结果表明,枯水期沟塘水中BaP含量、∑PAHs、TEQ(BaP)含量和致癌性PAHs占比分别为0.911ng/L、29.3ng/L、1.64ng/L和28.1%,均低于丰水期;浅层地下水中各指标分别为5.37ng/L、291ng/L、12.5ng/L和25.9%,高于丰水期.枯丰水期沟塘水和浅层地下水中PAHs均主要源于生物质和煤炭燃烧.浅层地下水PAHs的含量与沟塘水具有关联性,即距离沟塘越近,PAHs含量越高,枯水期的关联性低于丰水期.饮用浅层地下水致PAHs暴露的累积非致癌风险HQ为2.21x10-3;累积致癌风险R为1.56x10-6,72.0%成人R大于1x10-6,枯水期BaA、BbF和InP对成人致癌风险的贡献分别为72.1%、9.10%和4.80%.枯水期沟塘水PAHs总量为低等生态风险,丰水期为中等风险,不同沟塘其生态风险不同.纳污的C5沟塘水丰水期PAHs为高生态风险水平,BaA的贡献最大(占40.7%);纳污和养殖的A2枯水期和C3沟塘水丰水期PAHs为中等风险2水平.综上,沟塘水PAHs与周边浅层地下水具有关联性,枯水期沟塘水PAHs总量具有低生态风险,饮用周边浅层地下水的致癌风险高于1x10-6.  相似文献   

4.
南水北调中线水源地丹江口水库水化学特征研究   总被引:12,自引:6,他引:6  
李思悦  程晓莉  顾胜  李佳  张全发 《环境科学》2008,29(8):2111-2116
丹江口水库是南水北凋中线工程的水源地,对水库中的5个点位进行了3 a的动态监测.对水化学类型和水化学特征进行了系统分析,运用相关分析及方差分析,对水化学时间、空间分布特征进行了研究.结果表明,TDS介于149.9-291.2mg·L-1,属于弱矿化度水.总硬度(以Ca2 、Mg2 浓度和计)介于40~50 mg·L-1之间,属于极软水.HCO3-及Ca2 分别介于122.5-170.0 mg·L-1、37.1-43.2 mg·L-1,分别占主要阴、阳离子组成的77.54%~77.87%和70.66%-77.93%.按照O.A.阿列金分类法,丹江口库区水质为HCO3--Ca型水.主要离子呈现一致的空间变化,在丹江库区沿水流方向逐渐降低,至汉江库区达到最小值.水化学特征的季节及时间变化表明,主要离子的浓度在枯季比在雨季大.丹江口水库水化学特征主要由岩石风化决定,高浓度的HCO3-及Ca2 主要来源于方解石和白云岩,但是上游及库区周边人为活动对NO3-产生了一定的影响.最后,提出了流域水资源保护的建议和措施.  相似文献   

5.
以温榆河为研究对象,采用real-time PCR研究了温榆河不同断面水样和沉积物样品中TB(总细菌)、硝化和反硝化(nosZ和narG)基因数量的变化. 水样中TB基因数量在丰水期为1.05×109~7.38×1011 copies/L,枯水期为1.06×109~2.69×1012 copies/L;氨氧化细菌(AOB)基因数量在丰水期和枯水期分别为nd(未检出)~4.11×108和nd~1.15×109 copies/L. nosZ和narG基因数量在丰水期分别为nd~2.37×108和3.61×108~1.13×1010 copies/L,枯水期分别为2.0×106~3.04×109和nd~1.39×1010copies/L. 枯水期沉积物样品中TB基因数量为1.35×109~7.32×1010 copies/g,nosZ基因数量为nd~1.06×107 copies/g,narG基因数量为1.99×107~1.02×108 copies/g. 枯水期TB基因数量略高于丰水期,枯水期水样中ρ(NH4+-N)较高导致其AOB基因数量要远高于丰水期,nosZ和narG基因数量并没有明显的水期变化. 相关分析表明,沉积物样品中微生物基因数量与水样中微生物基因数量不相关,而是水质变化长期作用的结果. 冗余度分析表明,丰水期和枯水期水样中影响微生物基因数量的主要环境因子不同,丰水期微生物基因数量是温度、ρ(CODCr)、ρ(NH4+-N)、ρ(NO2--N)、ρ(NO3--N)等共同作用的结果,而温度和ρ(CODCr)对枯水期微生物基因数量影响显著.   相似文献   

6.
海南岛近岸海域溶解无机磷时空分布及富营养化   总被引:1,自引:0,他引:1  
根据2016年枯水季、丰水季和平水季海南岛近岸海域表层海水现场调查资料,对该海域表层海水中溶解无机磷(DIP)的时空分布特征进行研究,评价其污染水平和营养盐结构,分析该海域富营养化程度,并探讨了研究区域DIP的主要来源及与环境因子之间的关系.结果表明,海南岛近岸海域表层海水DIP的平均浓度为(0.008±0.006)mg/L,浓度范围为0.000~0.062mg/L,万宁小海海域是3个水季的主要污染区域;平水季研究海域DIP污染水平高于枯水季与丰水季;富营养化指数变化范围为0.00~3.94,平均为(0.21±0.46),总体上海南岛近岸表层海水富营养化程度较低,但局部海域富营养化问题依然突出.  相似文献   

7.
渭河陕西段浮游植物群落结构时空变化与影响因子分析   总被引:1,自引:0,他引:1  
浮游植物是水生态系统的初级生产者,其群落结构与水环境密切相关.为了解渭河陕西段浮游植物群落结构时空格局及其与环境因子的关系,更好地进行水资源和水生态保护,于2017年9月—2018年4月在丰水期和枯水期对该河段设定的9个研究断面,27个采样点位进行浮游植物群落结构和水环境因子调查监测,共检出浮游植物8门69种,群落结构分析表明,枯水期浮游植物种类数高于丰水期.浮游植物细胞密度和生物量变化分别为84.9×104~3868.3×104 cells·L-1、0.268~20.978 mg·L-1,丰水期平均密度(1490.0×104 cells·L-1)和平均生物量(7.864 mg·L-1)显著大于枯水期(354.8×104 cells·L-1、1.152 mg·L-1).优势种分别为6种和8种,主要以绿藻门和硅藻门为主.浮游植物Shannon-Wiener指数(H'')、Pielou均匀度指数(J)、Margalef丰富度指数(d)均表明丰水期浮游植物多样性高于枯水期,9个采样断面的水质总体评价呈现出无污染或轻度污染至中轻污染状态.典范对应分析(CCA)排序结果表明,影响枯水期浮游植物群落结构的主要环境因子为总磷(TP)、pH和总溶解性固体(TDS),TP和高锰酸盐指数(CODMn)是影响丰水期浮游植物群落结构的主要环境因子.  相似文献   

8.
分别于2014年3月(枯水期)和7月(丰水期)对钦州湾海区Chl a浓度分布及其粒级组成进行了分析。结果表明,研究区域两个时期都具有较高氮浓度和氮磷比,枯水期磷酸盐浓度高于丰水期,Chl a浓度及其粒径结构差异显著。枯水期Chl a浓度(1.70±0.74 μg/L)显著低于丰水期浓度(7.81±3.63 μg/L)(p < 0.01)。优势粒级从枯水期Nano级Chl a(51.8±14.0%)向丰水期Pico级(50.4±17.4%)演变。Pico级与Micro级共同构成了丰水期的Chl a浓度高值,两个时期Nano级Chl a浓度无明显差别。Nano级Chl a对总Chl a浓度的贡献存在着自枯水期优势(51.8±14.0%)至丰水期降低(15.5±9.2%)的动态变化。通过与营养盐和盐度等因子的相关分析,可知浮游植物粒级组成的差异与钦州湾陆地径流的输入、营养盐浓度变动及高密度牡蛎养殖密切相关。  相似文献   

9.
基于沙颍河流域的水环境污染研究,利用不同污染评价指数的计算方法,针对不同水期、不同干流、不同支流河段水体样本的重金属污染特征进行分析,对沙颍河流域水环境污染控制因素及迁移影响规律进行探究,旨在为沙颍河流域水环境污染防治提出具有针对性的理论依据。结果表明:沙颍河流域整体在枯水期存在轻度Mn、Mo污染现象,流域整体污染受控于上游支流颍河和支流北汝河的污染,其中支流颍河污染的主要控制因素为Mn,支流北汝河污染的主要控制因素为Mn和Mo。污染的主要来源为矿产和工业污废水的排放,自上游至下游河段顺水流迁移转化,而流域整体呈轻度污染,污染水平主要受到pH值、溶解氧(DO)、温度(T)的影响。  相似文献   

10.
北京市清河水体非点源污染特征   总被引:1,自引:1,他引:0       下载免费PDF全文
为揭示城市水体非点源污染特征,以北京市清河流域为研究对象,于2013年8月—2014年12月对流域不同河段河水、雨水、降雨前后河水、降雨径流以及不同下垫面(居民区、商业区、绿地、街道、农田)的土壤或降尘中主要污染物进行了采样分析.结果表明:清河水体污染严重,大部分污染物浓度均超过GB 3838—2002《地表水环境质量标准》的V类标准,营养盐浓度甚至超过GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准.河水主要污染物浓度远高于雨水污染物浓度,长期来看,受雨水影响较小.丰水期河水ρ(TDP)(TDP为溶解性总磷)显著高于枯水期和平水期,而丰水期ρ(TDN)(TDN为溶解性总氮)却低于枯水期和平水期(P < 0.05),ρ(CODMn)和ρ(NH4+-N)在3个水期没有显著差异.与降雨前相比,降雨后河水ρ(TDN)显著降低,ρ(TDP)却显著升高(P < 0.05),ρ(CODMn)、ρ(NH4+-N)在降雨前后没有显著差异.研究显示,清河流域的降雨径流增加了河水外源磷输入,磷的初期冲刷效应最为显著,且水体磷的非点源特征明显,而氮主要来源于生活污水排放,受非点源影响较小,清河水体CODMn、NH4+-N则同时受点源和非点源的影响.   相似文献   

11.
青海省作为黄河发源区,其境内干支流水质对整个黄河流域和北方地区具有十分重要的战略意义.为深入了解黄河流域(青海段)氮污染特征,采集黄河干流流域、湟水河流域、大通河流域共30个断面不同水期的水样进行监测,系统分析氮时空分布特征,并采用氮氧稳定同位素技术解析了水体中氮的主要来源.结果表明:(1)该区域水体TN浓度在0.33~13.50 mg/L之间,平均值为3.40 mg/L,表现为湟水河流域>大通河流域>黄河干流流域,各形态氮浓度表现为NO3--N>TON>NH4+-N>NO2--N.(2)各流域TN浓度最高均为丰水期,但枯水期和平水期各不相同,氮形态分布也不同,说明氮污染来源可能存在差异.(3)相关性分析显示,TN与TON、NO3--N具有较好的同源性;SIAR模型分析显示,各污染源对NO3--N的贡献率表现为土壤源>凋落物源>...  相似文献   

12.
为识别西洞庭湖长江三口分流来水与洞庭湖水系河流来水磷元素的污染特征,于2016年1-12月在西洞庭湖的主要入湖河流松滋河(三口分流河道)、沅江和澧水(洞庭湖水系河流)开展了水文水质同步调查,研究了入湖河流中磷浓度和组成的时空分布特征,剖析了水文因素对磷污染特征的影响,探究了磷的来源结构.结果表明,3条主要入湖河流流量平均值表现为沅江(1 718 m3/s)>松滋河(935 m3/s)>澧水(884 m3/s),ρ(TP)平均值表现为沅江(0.070 mg/L) < 澧水(0.077 mg/L) < 松滋河(0.138 mg/L);沅江的年均入湖磷通量(4 177.26 t/a)对于西洞庭湖磷污染而言仍起主导作用;沅江、澧水与松滋河的磷的形态以DTP(溶解态磷,占比为78.56%~90.19%)为主,并且松滋河DTP占比(90.19%)显著高于沅江和澧水(78.56%~83.34%).进一步的分析显示,3条河流的磷污染状况受水文因素影响显著,沅江和澧水磷浓度表现为汛期高于非汛期,磷的主要来源为非点源;松滋河的磷浓度表现为非汛期高于汛期,汛期主要取决于长江来水状况,非汛期主要取决于松滋口以下区间的点源污染状况.研究显示,3条河流磷浓度和形态均具有时空差异性,并且年内变化规律差异较大.   相似文献   

13.
在松花江吉林市段布设了14个监测断面,对各监测断面BOD5、CODMn、氨氮、总磷及溶解氧等水质因子进行枯水期、平水期、丰水期的水质监测,运用单项指数法和模糊综合评价法对监测结果进行评价。单项指数评价结果表明枯水期水质为Ⅳ类,BOD5、CODMn为主要污染因子;平水期为Ⅴ类,BOD5为首要污染因子;丰水期水质Ⅳ类,首要污染物为BOD5、CODMn。模糊综合评价结果表明枯水期仅有F、I、L三个监测断面水质超过Ⅲ类水标准,且均隶属于Ⅳ类;平水期出现I、L两个隶属于Ⅳ类水的监测断面和一个隶属于Ⅴ类水的监测断面J;丰水期水质均达到Ⅲ类以上水质标准。对比两种评价方法,模糊综合评价法更适于松花江吉林市段的水质评价。  相似文献   

14.
为深入研究河口近岸海域DMS(二甲基硫)的生物地球化学过程,于2014年2月(枯水季)和7月(丰水季)对长江口及附近海域表层海水中DMS及其前体物质DMSP(二甲巯基丙酸内盐)的浓度分布及影响因素进行了研究,测定了DMSPd(溶解态DMSP)的降解速率和DMS的生物生产与微生物消费速率,并估算了DMS的海-气通量.结果表明:①枯水季和丰水季c(DMS)、c(DMSPd)、c(DMSPp)(DMSPp为颗粒态DMSP)的平均值±标准偏差分别为(0.54±0.28)(2.04±1.32)(6.65±5.07)和(3.99±3.70)(5.57±4.72)(14.26±9.17)nmol/L,长江口海域丰水季生源硫化物的浓度明显高于枯水季.②枯水季和丰水季c(DMSPd)与ρ(Chla)均呈弱相关,说明浮游植物在控制长江口海域DMSP的生产分布中发挥重要作用.③枯水季和丰水季c(DMS)/ρ(Chla)的平均值±标准偏差分别为(2.62±3.28)和(4.60±7.49)mmol/g,表明丰水季DMS的高产藻种(甲藻)在浮游植物生物量中所占比例高于枯水季.④枯水季表层海水中DMSPd的降解速率和DMS的生物生产速率分别介于(2.84~30.53)和(0.52~2.19)nmol/(L·d)之间,平均值分别为14.55和1.30 nmol/(L·d),表明DMS并不是DMSPd的主要降解产物.⑤枯水季和丰水季DMS的海-气通量平均值±标准偏差分别为(0.36±0.32)和(2.17±2.98)μmol/(m2·d),而且丰水季的硫排放量明显高于枯水季,这主要与夏季较高的c(DMS)有关.研究显示,长江口海域生源硫化物的浓度变化及分布特征呈明显的季节性差异,河口近岸海域是海洋有机硫排放的重要区域.   相似文献   

15.
以博斯腾湖原水为培养液,通过添加SO42-和Cl-调节培养液的矿化度分别为0.5、1.5、3.5、10.0g/L,考察不同矿化度对浮游植物生长及群落结构的影响. 结果表明:在对数生长期内,浮游植物生物量、比增长率及ρ(Chla)均随矿化度的增加而升高;生长后期高矿化度(10.0g/L)对浮游植物有抑制作用. 在各矿化度下的浮游植物优势门类均为硅藻门,其生物量占藻类总生物量的95%以上. 随着矿化度升高,蓝藻门有较好的适应性,能够生长,但绿藻门受到明显抑制. 试验显示,优势属为脆杆藻(Fragilaria)、针杆藻(Synedra)、舟形藻(Navicula)和羽纹藻(Pinnularia). 矿化度为0.5g/L时很少出现舟形藻,但随着矿化度的升高,舟形藻逐渐成为优势种,其生物量占18.51%~26.18%;羽纹藻生物量在矿化度为0.5和1.5g/L时所占比例分别达3.40%和4.94%,在高矿化度(3.5~10.0g/L)下则极少出现,不再具有优势. 研究表明,舟形藻和羽纹藻可作为博斯腾湖咸化过程的参考藻种.   相似文献   

16.
王楠  毛亮  黄海波  张进忠  周培 《环境科学》2012,33(3):802-809
为研究平原地区都市农业区域地表水非点源氮素的时空分异特征,揭示非点源氮污染对地表水环境的影响,连续监测了上海南汇新场镇果园村地表水中总氮和无机"三氮"(硝态氮、铵态氮和亚硝态氮)的含量.结果表明:①水文期和土地利用类型共同影响地表水中氮素的空间分布.受果园影响的地表水中硝态氮(NN)浓度较高,铵态氮(AN)浓度较低,各监测点氮素浓度在多雨期差异较大,在少雨期差异较小;受居民区和工厂影响的地表水中NN和AN浓度相差不大,各监测点氮素浓度在多雨期和少雨期差异都较大.②冬、夏季风风向可能影响果园村地表水中氮素的空间分布.③春雨期总氮(TN)、NN和AN的空间变异大,梅雨期和冬季少雨期略大于秋雨期和盛夏少雨期;亚硝态氮(SNN)与之相反.④5月溶解性有机氮(DON)是果园区地表水中氮素的主要存在形式,占TN的质量分数达到76.1%;其它季节则以溶解性无机氮(DIN)为主,占TN的质量分数平均达到83.2%.⑤果园区NN的季节变异比居民区大,居民区AN和TN的季节变异比果园区大.  相似文献   

17.
为探究沉积物内源污染对亚热带分层型水源水库(茜坑水库)夏季水质的影响,采用现场监测和室内模拟相结合的研究手段,于2020年5~9月对茜坑水库深水区水温、溶解氧、氮磷等进行了监测,并采用静态实验模拟法分析了茜坑水库沉积物的耗氧速率及沉积物中氮磷的释放通量.原位监测结果表明,5~9月,茜坑水库水温和溶解氧均处于分层状态,该时期水库底层水体溶解氧含量较低,为沉积物内源污染物的厌氧释放提供了条件;分层期底层水体氨氮和总磷浓度显著高于表层和中层(P<0.01),相应的表层水体氨氮和总磷平均浓度分别为0.062mg/L和0.033mg/L,中层为0.058mg/L和0.037mg/L,底层为0.242mg/L和0.052mg/L.静态模拟实验结果表明,水体及沉积物耗氧均符合零级反应动力学模型(R2分别为0.987,0.989),其中沉积物的耗氧速率处于较高水平,为1.03g/(m2·d),约为水体的1.45倍;沉积物耗氧诱发等温层溶解氧降低并伴随沉积物内源污染释放,其中氨氮的释放极值为0.261mg/L,平均释放通量为7.36mg/(m2·d),总磷的释放极值为0.108mg/L,平均释放通量为2.20mg/(m2·d).内源氨氮和总磷的释放对水体贡献率分别可达27.98%和38.92%,沉积物氮磷释放对水库水质影响显著.  相似文献   

18.
基于2012年9月(丰水期)和2013年1月(枯水期)海南西北部近岸海域的调查资料,分析该海域浮游植物的种类组成、优势种、细胞数量及其群落结构多样性。共鉴定浮游植物4门42属151种,硅藻为最主要优势类群。丰水期与枯水期共有种类90种,物种相似性指数为59.60%,表明种类组成不存在明显的季节性差异。丰水期优势种有3种,分别为旋链角毛藻(Chaetoceros curvisetus)、洛氏角毛藻(Chaetoceros lorenzianus)和柔弱菱形藻(Nitzschia delicatissima),其中以旋链角毛藻优势度最高(0.464);枯水期优势种有两种,为金藻门的球形棕囊藻(Phaeoecystis globosa)和硅藻门的细弱海链藻(Thalassiosira subtilis),优势度分别为0.217和0.062。枯水期和丰水期浮游植物平均细胞数量分别为3.250104/L和0.133104/L,细胞数量分布表现出明显的时间和空间异质性,主要密集区为海口市和临高县沿岸海域;与枯水期浮游植物细胞数量相比较,丰水期在海口市至儋州市沿岸细胞数量较低,而在东方市沿岸细胞数量较高。调查海域浮游植物群落结构多样性总体较好,丰水期和枯水期的Shannon-Wiener指数和Pielou均匀度指数分别为3.378,0.679和2.795,0.578;多样性水平季节变化呈现为临高县沿岸枯水期较高,而其他调查海域丰水期较高。相关分析表明:丰水期浮游植物细胞数量与无机氮(DIN)(P0.01)和Chl a(P0.05)呈正相关;枯水期浮游植物细胞数量与BOD5(P0.01)和DO(P0.05)呈正相关,而与盐度(P0.01)呈显著负相关。  相似文献   

19.
郭攀  孙涛  杨光  马明 《环境科学》2018,39(12):5473-5479
森林生态系统的汞产量可以用森林湖泊或水库的动态变化来表征.而且,下游汞浓度的变化也可以在一定程度上反映森林生态系统汞的输出.通过对四面山大洪湖上游、中游、下游丰水期与枯水期汞的分布与沉积物剖面的分析发现:大洪湖上覆水中总汞浓度在丰水期显著增加(丰水期平均值4. 33 ng·L~(-1),枯水期1. 85 ng·L~(-1)),在下游尤为明显,其总汞和甲基汞的含量明显高于其他类型湖泊,但小于受到污染的湖泊,说明四面山常绿阔叶林具有一定"汞源"的特征,同时沉积物也是大洪湖上覆水中甲基汞和无机汞的输入源;甲基化过程主要发生在沉积物的表层,丰水期时甲基化过程更活跃;在丰水期时,更有利于汞和甲基汞从沉积物固相进入沉积物液相,从而进入上覆水中.  相似文献   

20.
钱塘江兰溪段地表水质季节变化特征及源解析   总被引:6,自引:1,他引:5  
季节变化对水质的影响评价是流域水质管理的重要内容之一.选取钱塘江兰溪段6个监测点位为研究对象,测定了2010和2011年丰水期和枯水期12个水质指标,采用因子分析技术识别关键污染因子及来源的季节变异特征,并基于层次聚类分析和改进的模糊数学方法进行不同季节关键污染因子空间差异性分析和水质综合评价.结果表明,枯水期关键污染因子为来源于城镇集中式生活污水处理厂、纺织业等点源的CODMn、BOD5和NH4+-N,丰水期为来源于农业面源的NH4+-N、TP和工业点源的CODMn;枯水期和丰水期关键污染因子存在空间差异性,无论枯水期还是丰水期,费垅为重污染区域,横山、洋港和将军岩为轻度污染区域;其不同之处在于枯水期女埠和西门码头为中度污染区域,而丰水期则为轻度污染区域;关键污染因子综合水质丰水期优于枯水期,丰水期16.7%的监测点位综合水质归属于V类,而枯水期50%的监测点位综合水质归属于V类.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号