首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 713 毫秒
1.
低温等离子体-催化协同净化有机废气研究进展   总被引:1,自引:1,他引:0  
低温等离子体-催化协同净化技术是一种理想的环境污染治理技术,催化剂的加入可有效地提高废气治理的净化效果和二氧化碳的选择性,减少副产物的产生,并进一步降低能耗。分析了低温等离子体-催化协同净化有机废气的协同作用机理,阐述了反应器结构、催化剂参数、电参数以及工艺参数等对反应器性能的影响,并指出今后研究的发展方向。  相似文献   

2.
等离子体催化氧化恶臭污染物的试验   总被引:3,自引:1,他引:2  
尝试用一种等离子体光催化复合技术净化污水处理泵站臭气,研究表明,该种复合技术具有较显著的协同促进效应,通过改变等离子体发生单元与光催化单元的距离以及在两者之间放置去静电网,可消除等离子体单元产生的负电荷对光催化单元的不利影响,进一步提高其复合效应。在此还对这一复合技术产生协同效应的机理进行了分析,并在污水处理泵站实地考查了这种复合技术对臭气的净化效果。  相似文献   

3.
综合探讨了低温等离子体与光催化耦合这一新兴技术净化空气污染物的机理,讨论了影响耦合净化功能的主要因素以及臭氧的去除方法,介绍了该技术在去除挥发性有机物、氮氧化物、除菌等方面的研究现状,提出了其今后的研究方向。  相似文献   

4.
总结了汽车4S店废气中挥发性有机物来源及危害,在评价常规有机废气治理技术基础上,对比分析了催化燃烧、光催化、等离子体技术的成本,并提出适合处理4S废气的组合工艺。  相似文献   

5.
低温等离子体-催化协同降解挥发性有机废气   总被引:4,自引:1,他引:3  
低温等离子体-催化协同技术适合于各类挥发性有机物的治理,特别是大气量低浓度的有机废气的处理.高效催化剂的加入可 以显著提高等离子体反应中有机废气的降解效率,减少有害副产物的生成以及提高反应器的能量利用率.从反应器、催化剂以及背景气体等方面探讨了该技术实现产业化需要解决的问题,结合低温等离子体与催化剂的相互作用、等离子体...  相似文献   

6.
文章介绍了含酮类有机废气的特征与危害、等离子体催化处理含酮类有机废气现状。重点探讨了不同类型的等离子体催化净化含酮废气装置,各种影响参数如放电功率、放电方式、气体浓度、气体流速、催化剂种类、性质、吸附性、温度、活性物种等对等离子体催化处理含酮类物质的影响,结果表明:等离子体催化处理含酮类有机废气技术具有去除率高、能耗低、效率高、产物选择性好等特点。文章同时探讨了等离子体催化氧化酮类物质的机理,提出了等离子体催化氧化酮类有机废气未来的发展方向。  相似文献   

7.
阐述了低温等离子体协同催化工艺流程与反应机理,探讨了反应温度、废气进口组分、废气中水蒸气含量、气体流速、气溶胶等因素对降解效果的影响。分析认为:一段式低温等离子体协同催化可改变低温等离子体特征及催化剂催化特性,但尚未解决尾气臭氧逃逸、副产物产生及放电稳定性等问题;两段式低温等离子体协同催化可提高污染物分子降解效率并减少尾气臭氧逃逸,但未能有效利用等离子体的能量,气体中的水蒸气、粉尘及反应过程中产生的气溶胶均能影响后置催化剂的催化性能;两段式低温等离子体协同催化已具备工程应用条件,还需配套高效预处理单元以降低废气中水蒸气、粉尘等对催化剂的影响。  相似文献   

8.
尝试了一种新的等离子体一光催化复合方式,研究表明该种复合方式具有较显著的协同促进效应,通过改变等离子体发生单元与光催化单元的距离以及在两者之间放置网状物,可消除等离子体单元产生的负电荷对光催化单元的不利影响,进一步提高其复合效应。还对这一复合方式下协同效应产生的机理进行了分析。  相似文献   

9.
喷涂工程会形成大量游离的有机废气,这是空气中可挥发性污染物的根本来源,是造成光化学烟雾等有机污染以及PM2.5污染的产生原因之一。针对这一现象,国家出台了相关的管理策略与行业标准,而在整体的体系环节内如何做好喷漆废气的处置成为了研究热点。等离子体处置方式由于其使用便捷、处理效率高、无等次污染等特性而广受关注。但是在客观层面上也存在着能耗较高、能源转化率较低的客观问题,严重地制约了其应用效果。为此,本文系统总结等离子体联合光催化的处置方式在喷漆废气处理过程当中的具体原理以及应用策略。希望能够为后续的相关实践提供理论基础。  相似文献   

10.
根据滑动弧放电等离子体适于降解高浓度有机物废气的特性,结合活性炭吸附法,提出了吸附器的吸附浓缩和热脱附-等离子体氧化净化有机废气技术。实际运行结果表明:对于处理低浓度、大风量的有机废气,该技术与其他技术相比具有净化效率高、二次污染小和节省能耗等优点。  相似文献   

11.
挥发性有机物处理新技术的研究   总被引:6,自引:3,他引:3  
随着VOCs处理要求的不断提高,新型的VOCs处理技术日益受到关注。详细分析了生物法、光催化氧化法以及等离子体催化氧化法VOCs处理新技术的研究进展。高效微生物的筛选、新型生物填充材料的研究使生物法VOCs处理更加实用;光催化剂的表面改性有助于防止催化剂钝化,保证光催化系统的长期稳定运行;等离子体催化氧化VOCs过程中能耗的降低以及副产物的控制将是下一步研究的重点。  相似文献   

12.
气体放电光催化去除VOCs的实验研究   总被引:10,自引:1,他引:9  
本实验研究试图将气体放电等离子填充床反应器与纳米TiO2 光催化剂相结合 ,以气体在介质表面放电产生的紫外线为光催化材料的驱动力 ,将等离子与光催化两种处理VOCs技术相结合提高反应器的去除效率。实验证明这种气体放电光催化处理VOCs的效果是明显的 ,较无纳米TiO2 光催化涂层提高去除效率 10 %~ 17%。  相似文献   

13.
气相中甲苯的臭氧-光催化降解   总被引:10,自引:2,他引:8  
初步研究了气相中中低浓度(10~80mg/m3)甲苯的臭氧-光催化联合降解,考察甲苯初始浓度、气体流量和湿度对降解效率及去除负荷的影响,并与单一光催化降解进行了比较.结果表明,臭氧-光催化对甲苯的降解效率大大高于光催化的降解效率,在较高浓度时效果更为显著;甲苯浓度在10~40mg/m3范围时,臭氧-光催化降解效率高达90%以上,但随甲苯初始浓度升高而缓慢地线性下降;湿度对甲苯的臭氧-光催化降解稍有影响,但去除率变化不超过2.5%.  相似文献   

14.
紫外消毒是污水处理常用技术.紫外线仅能破坏微生物的遗传物质,阻断其繁殖,并不能彻底杀死微生物,一旦停止紫外光照射,微生物可在修复酶的作用下恢复活性.光催化过程能产生强氧化性·OH,破坏细胞壁和细胞膜,彻底杀死微生物.为考察光催化技术消毒效率、抑制复活性能及应用潜力,在市售紫外消毒器中安装了光催化组件,搭建了连续流动式光催化消毒器.以大肠杆菌(E.coli)和噬菌体为目标物评价其消毒能力.紫外剂量50 m J·cm-2条件下,初始浓度3.40×106CFU·m L-1的E.coli原水流经紫外消毒器后被去除4.12 log10的E.coli,而流经光催化消毒器后去除4.79 log10.同时光催化处理后E.coli的光复活率仅为紫外消毒后的17%.连续运行40 h的灭菌能力稳定.光催化设备对噬菌体F2和噬菌体MS2的去除率分别为6.37 log10和6.00 log10,表明该设备也具有病毒去除能力.  相似文献   

15.
TiO2薄膜光电协同催化氧化降解活性艳红   总被引:17,自引:0,他引:17  
以不同波长紫外光为光源 ,研究了活性艳红在间歇式反应器中的光降解、光催化降解、光电协同催化降解行为 .结果表明 :在相同条件下 ,光催化降解速度快于光降解速度 ,而光电协同催化降解速度取决于协同电场的方向 ,当电场方向与紫外线照射方向相同时 ,降解速度比光催化速度慢 ,而当电场方向与紫外线照射方向相反时 ,其降解速度快于光催化降解速率 .  相似文献   

16.
为了实现4-氟苯酚(4-FP)废水的快速持续降解,本文构建了光催化与生物膜直接耦合系统.该耦合系统由N掺杂TiO2涂覆光催化光纤束、生物膜、核孔膜和紫外-可见LED光源构成.实验研究了单独光催化、单独微藻生物膜及光催化-生物膜耦合3种体系对4-FP的降解性能.研究发现:光催化系统降解4-FP速率慢、脱氟效率低,12h内降解率为94.3%,脱氟率仅为24.7%.微藻生物膜在第一个周期内对4-FP的降解性能高于单独光催化,10h内降解率达到98.9%,脱氟率达到90.9%,但3个周期后4-FP降解率降低至75.5%,脱氟率降低至69.5%.在耦合系统中,生物膜中微生物种群发生了自适应调整,富集了大量的红球菌、假单胞菌和无色杆菌,导致了光催化、生物降解及光合作用三者亲密协作,实现了4-FP快速持续地降解,运行12个周期后,5h即可将4-FP完全降解,同时溶解有机碳及脱氟率分别达到89.4%和78.3%.  相似文献   

17.
纳米TiO2光催化-SBR联合工艺处理制药废水   总被引:6,自引:1,他引:6  
采用偶联剂法将纳米TiO2附着于聚丙烯多面小球上,以"纳米TiO2光催化-SBR"联合工艺对实际制药废水进行了处理.在光催化降解阶段,以催化剂添加量、光照时间、pH值、H2O2使用量为因素进行正交实验,所得的最佳工况如下:催化剂添加量为54.8mg·L-1 (400个小球),光照时间为4h,pH值为5.0,H2O2使用量为0.5mg·L-1;在SBR处理阶段,沉淀时间为1h,曝气时间为10h,曝气强度为1.25m3·h-1,水力停留时间为26h.在以上工况条件下,联合工艺对CODCr去除率可达到87.66%,BOD5去除率可达到88.59%,SS去除率可达到61.09%,pH值从5 00上升到7.67.可见,运用联合工艺对制药废水进行处理是可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号