首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To investigate the effect of air-exposed biocathode(AEB) on the performance of singlechamber microbial fuel cell(SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95%AEB, removal rates of ammonia, total nitrogen(TN) and chemical oxygen demand(COD)reached 99.34% ± 0.11%, 99.34% ± 0.10% and 90.79% ± 0.12%, respectively. The nitrogen removal loading rates were 36.38 g N/m~3/day. Meanwhile, current density and power density obtained at 0.7 A/m3 and 104 m W/m~3 respectively. Further experiments on opencircuit(Test 2) and carbon source(Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation.  相似文献   

2.
Delft University has an established track record in educating MSc students the art of designing chemical processes and products. To foster its future position an experimental conceptual design program has been set up. In this program sustainability requirements are used to stimulate creativity. Our vision is that (designs of) processes, products and systems should fit in a sustainable technological world (STW). The STW is in balance with the other great cycles on Earth, being the exchange of water between hydrosphere and atmosphere and the exchange of carbon dioxide between atmosphere and biosphere. The STW has, like the biosphere and hydrosphere, a certain upper mass (110 Gton) and energy (8800 GW). The STW itself is evolutionary and cannot be designed, yet its content—technological artifacts—is designed. Newly designed artifacts requiring an average life span of 25 years (one human generation), should fit the STW. The total annual product renewal of the STW is 4.4 Gton/year and the energy consumption 64 MJ/kg. These numbers total both industrial production as well as energy spent by consumers using the artifacts. Conceptual designs of chemical processes should fit in this concept of a STW. This means that processes requiring a high energy level are subject to change, for they limit society's patterns of energy consumption. Chemical processes demanding a lot of chemical energy are reduction processes: primary processes (roasting ores and biomass) and secondary processes (dissociations and dehydrogenations). In this article a conceptual design of both types of processes is presented. The first results show that their energy consumption fits the STW and points towards new design solutions for chemical processes, new applications of chemical products and new relationships with other technological sciences.  相似文献   

3.
The Government of Eritrea gave priority status to the energy sector immediately after the country's independence in May 1991, as manifested by the rapid improvement in electricity and oil supplies. Electricity generation capacity has increased from a total of 30 MW in 1991 to over 130 MW at present. The lengths of transmission and distribution lines have similarly increased from 150 km to 400 km and from 800 to 1300 km respectively. However, as in most Sub-Saharan Africa, this public utility is characterised by inefficient managerial, technical and financial performances, an inability to mobilize the funds needed for expansion, low repair and maintenance capacity, inappropriate tariff rates, and inadequate revenue collection mechanisms. This has led the government to take appropriate reform measures in recent years, including the restructuring of the Eritrea Electric Corporation (EEC) to operate on commercial principles, setting tariffs based on real costs and reasonable profits, effective collection of revenues, the minimization of wastage and loss in the delivery of energy services, facilitating the private sector participation, and ring-fencing the interests of the poor by setting up a Rural Electrification Fund. A Regulatory body has been established to enforce these reform measures. Recognising the role of modern energy in poverty reduction and achieving the Millennium Development Goals (MDGs), the Government with the support of its development partners is expanding energy services to rural areas in an innovative manner. The Government's commitment to diversify energy sources is exemplified by its agreement with the Global Environment Facility (GEF) to share the costs of an on-going pilot wind energy project. It has also established an Energy Research and Training Centre to promote the application of renewable energies and improved biomass stoves throughout Eritrea.  相似文献   

4.
Dehydrating large amounts of sludge produced by sewage treatment plants is difficult.Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300 W and an exposure time of 60 sec, and that in the continuous experiment was 77.56% under a microwave power of 400 W and an exposure time of 60 sec.The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600 W and an exposure time of 180 sec. The heat flux at the peak was 4.343 W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500 W, exposure time of 120 sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system.  相似文献   

5.
This paper presents the results of an environmental impact assessment of biodiesel production from soybean in Brazil. In order to achieve this objective, environmental impact indicators provided by Emergy Accounting (EA), Embodied Energy Analysis (EEA) and Material Flow Accounting (MFA) were used. The results showed that for one liter of biodiesel 8.8 kg of topsoil are lost in erosion, besides the cost of 0.2 kg of fertilizers, about 5.2 m2 of crop area, 7.33 kg of abiotic materials, 9.0 tons of water and 0.66 kg of air and about 0.86 kg of CO2 were released. About 0.27 kg of crude oil equivalent is required as inputs to produce one liter of biodiesel, which means an energy return of 2.48 J of biodiesel per Joule of fossil fuel invested. The transformity of biodiesel (3.90E + 05 seJ J?1) is higher than those calculated for fossil fuels as other biofuels, indicating a higher demand for direct and indirect environmental support. Similarly, the biodiesel emergy yield ratio (1.62) indicates that a very low net emergy is delivered to consumers, compared to alternatives. Obtained results show that when crop production and industrial conversion to fuel are supported by fossil fuels in the form of chemicals, goods, and process energy, the fraction of fuel that can actually be considered renewable is very low (around 31%).  相似文献   

6.
Rice husk generated as a by-product of rice mill processes can be utilized as an energy source for husk-fuelled rice mills. The economic evaluation of the investment of husk-fuelled steam engine rice mills, which generate mechanical energy for the direct driving of milling equipments, has previously been presented in literature. It was reported that for some particular conditions of rice mill, the investment of husk-fuelled steam engine as energy-saving technology is financially feasible. Since May 2002, electricity distributors in Thailand have allowed renewable energy producers up to 1 MW to connect their generators to the grid in order to sell surplus electricity to the grid. This arrangement creates more income opportunities for husk-fuelled steam engine owners to generate not only mechanical power for rice milling processes, but also surplus electricity for feeding onto the grid. The objective of this study is to investigate the financial feasibility of the investment in a husk-fuelled steam engine system which drives grid-connected electrical generators, reduces rice mill demand and electricity and sells surplus electricity to the grid. The technical and economic data for rice mill sizes 35, 45, 60, 95 and 120 t/d presented in this study show that the husk-fuelled steam engine system with grid-connected generators improves the economic performance of applying the system solely for the largest 120 t/d rice mills. However, the conventional husk-fuelled steam engine without electric generator gives a better economic performance of the rice mills sizes from 45 to 95 t/d.  相似文献   

7.
Biogas treatment of animal manures is an upcoming technology because it is a way of producing renewable energy (biogas). However, little is known about effects of this management strategy on greenhouse gas (GHG) emissions during fermentation, storage, and field application of the substrates compared to untreated slurries. In this study, we compared cattle slurry and cattle slurry with potato starch as additive during the process of fermentation, during storage and after field application. The addition of potato starch strongly enhanced CH4 production from 4230 l CH4 m−3 to 8625 l CH4 m−3 in the fermenter at a hydraulic retention time (HRT) of 29 days. Extending the HRT to 56 days had only a small effect on the CH4 production. Methane emissions from stored slurry depended on storage temperature and were highest from unfermented slurry followed by the slurry/starch mixture. Gas emissions from untreated and fermented slurry during storage were further analyzed in a pilot-scale experiment with different levels of covering such as straw cover, a wooden lid and no cover. Emissions of greenhouse gases (CH4, N2O, NH3) were in the range of 14.3–17.1 kg CO2 eq. m−3 during winter (100 day storage period) and 40.5–90.5 kg CO2 eq. m−3 during summer (140 day storage period). A straw cover reduced NH3 losses, but not overall GHG emissions, whereas a solid cover reduced CH4 and NH3 emissions. After field application, there were no significant differences between slurry types in GHG emissions (4.15–8.12 kg CO2 eq. m−3 a−1). GHG emissions from slurry stores were more important than emissions after field application. Co-digestion of slurry with additives such as starch has a large potential to substitute fossil energy by biogas. On a biogas plant, slurry stores should be covered gas-tight in order to eliminate GHG emissions and collect CH4 for electricity production.  相似文献   

8.
Bamboo presents physical and mechanical characteristics, which turn it an alternative option for product development, replacing native or reforested wood. The sustainability assessment of a Dendrocalamus Giganteus species plantation in Brazil through the emergy methodology evidences a great weight of renewable (30% sej/sej) and human labour contributions (33% sej/sej). These contributions account for the great interface with environment and to the intensive work, respectively. The transformity value of bamboo production is 2.42E + 04 sej/J. The influence human labour has on the total emergy flow and on indicators is evaluated by taking into account different country locations (Brazil, Australia and China). Thus, a different transformity value for labour is assumed for each country. A ranking based on emergy sustainability index (ESI) values shows that bamboo production in China was the first placed, followed by Brazil and Australia (values of 1.18, 0.50 and 0.09, respectively). The insertion of indirect renewability embedded in labour results in the ranking modification, leading to plantation in Brazil in the first place, followed by the Australian and Chinese ones. The relative position of the bamboo systems is visualized in the ternary diagram expressed in terms of emergy. In an attempt to explore the relationship between sustainability and time, a graphic of ESI vs. global productivity is discussed in terms of a prospective evaluation. Indirect support areas of the bamboo production are calculated as a way to evaluate the sustainability-space relationship.  相似文献   

9.
This paper reports an investigation into the effects of nanosecond laser processing parameters on the geometry of microchannels fabricated from polymethylmethacrylate (PMMA). The Nd:YAG solid-state pulsed laser has a wavelength of 1064 nm and a measured maximum power of 4.15 W. The laser processing parameters are varied in a scanning speed range of 400–800 pulses/mm, a pulse frequency range of 5–11 Hz, a Q-switch delay time range of 170–180 μs. Main effects plots and microchannel images are utilized to identify the effects of the process parameters for improving material removal rate and surface quality simultaneously for laser micromachining of microchannels in PMMA polymer. It is observed that channel width and depth decreased linearly with increasing Q-switch delay time (hence average power) and increased non-linearly with higher scanning rates and not much affected by the increase in pulse frequency.  相似文献   

10.
In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44,692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg?1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of 1 kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg?1, which is the volume of direct water use in Australia having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.  相似文献   

11.
Modified 9Cr-1Mo (P91) steel is widely used in the construction of power plant components. In the present study, a comparative study on influence of activated flux tungsten inert gas (A-TIG), and gas tungsten arc (GTA) welding processes on the microstructure and the impact toughness of P91 steel welds was carried out. P91 steel welds require a minimum of 47 J during the hydrotesting of vessels as per the EN1557: 1997 specification. Toughness of P91 steel welds was found to be low in the as-weld condition. Hence post-weld heat treatment (PWHT) was carried out on weld with the objective of improving the toughness of weldments. Initially as per industrial practice, PWHT at 760 °C – 2 h was carried out in order to improve the toughness of welds. It has been found that after PWHT at 760 °C – 2 h, GTA weld (132 J) has higher toughness than the required toughness (47 J) as compared with A-TIG weld (20 J). The GTA weld has higher toughness due to enhanced tempering effects due to multipass welding, few microinclusion content and absence of δ-ferrite. The A-TIG weld requires prolonged PWHT (i.e. more than 2 h at 760 °C) than GTA weld to meet the required toughness of 47 J. This is due to harder martensite, few welding passes that introduces less tempering effects, presence of δ-ferrite (0.5%), and more alloy content. After PWHT at 760 °C – 3 h, the toughness of A-TIG weld was improved and higher than the required toughness of 47 J.  相似文献   

12.
The effects of scouring parameters on the scouring efficiency, including the weight ratio of de-sizing agent and fabric (5–80 g/g fabric), temperature of de-sizing agent tank (60–90 °C) and dipping time (2–8 s), were investigated. The results demonstrated that weight loss of sizing agent was significantly observed only in the de-sizing agent tank particularly in the first de-sizing tank and was found to a small extent in water tank. The optimum condition in the scouring machine was found at a de-sizing agent to fabric ratio of 20 g/g fabric, with a temperature of the first de-sizing agent tank of 80 °C, a temperature of the second de-sizing agent tank of 90 °C, and dipping time of fabric of 7 s. According to these conditions, more than 89% of the sizing agent was eliminated and only 3.52 mg/g fabric of sizing agent remained in the scoured fabric which was in an acceptable range for feeding to the down stream process known as dyeing process. Application of our results to actual textile plant has shown that there is a cost reduction due to improved utilization of rinse water, chemicals and energy in the process and consequent decreases in the generation of wastewater. Furthermore, the production capacity was increased from 30 m/min to 34.4 m/min.  相似文献   

13.
The conventional deacidification methods have many disadvantages. In this paper, we reported a new method using microwave irradiation to remove the naphthenic acid from the vacuum cut #1 distillate oil of Daqing. When the distilled oil (the volume rate of solvent-to-oil was 0.23:1) was irradiated for 5 min under constant pressure (0.11 MPa), and then rested for 25 min, the acid number was reduced from 0.63 mg KOH/g to 0.0478 mg KOH/g, which was sufficient to meet the specification of Q/SHR001-95 (less than 0.05 mg KOH/g) on lubricating oil, and the recovery rate of the distilled oil was 99.3%. The microwave irradiation method has many advantages, such as, it is highly effective, it consumes less time and it is environmentally friendly.  相似文献   

14.
This paper is concerned with estimating the gap between current and compliant losses of suspended sediment from the agricultural sector in England and Wales in relation to achieving ‘good ecological status’ (GES) in freshwaters by 2015. Given the emphasis on strategic information for policy support, the assessment necessitated a novel modelling methodology for predicting mean annual total suspended sediment loads (SSL) and time-weighted suspended sediment concentrations (SSC). GES was defined as the guideline annual average SSC of 25 mg l−1 cited by the EC Freshwater Fish Directive. Total suspended sediment inputs to all rivers across England and Wales were estimated using a national sediment source apportionment exercise detailing the contributions from diffuse agricultural and urban sources, eroding channel banks and point sources. The total SSL estimated for each Water Framework Directive (WFD) sub-catchment (n = 7816) across England and Wales was used in conjunction with predicted flow exceedance to derive corresponding SSC time-exceedance plots. Spatial variations in modelled time-averaged SSC compared well with available monitoring data. Given the focus upon national scale, the predictive power of the SSC model (r2 = 33%) was considered realistic. The modelling approach provided a means of mapping the probability of annual average SSC being less than the 25 mg l−1 standard for GES due to sediment losses from all potential, as well as from agricultural sources only. In order to meet GES in non-compliant catchments, suspended sediment losses from diffuse agricultural sources will typically need to be reduced by up to 20%, but by as much as 80% in isolated cases.  相似文献   

15.
The present investigation deals with an application of integrated sequential oxic and anoxic bioreactor(SOABR) and fluidized immobilized cell carbon oxidation(FICCO) reactor for the treatment of domestic wastewater with minimum sludge generation. The performance of integrated SOABR-FICCO system was evaluated on treating the domestic wastewater at hydraulic retention time(HRT) of 3 hr and 6 hr for 120 days at organic loading rate(OLR)of 191 ± 31 mg/(L·hr). The influent wastewater was characterized by chemical oxygen demand(COD) 573 ± 93 mg/L; biochemical oxygen demand(BOD5) 197 ± 35 mg/L and total suspended solids(TSS) 450 ± 136 mg/L. The integrated SOABR-FICCO reactors have established a significant removal of COD by 94% ± 1%, BOD5 by 95% ± 0.6% and TSS by 95% ± 4% with treated domestic wastewater characteristics COD 33 ± 5 mg/L; BOD59 ± 0.8 mg/L and TSS 17 ± 9 mg/L under continuous mode of operation for 120 days. The mass of dry sludge generated from SOABR-FICCO system was 22.9 g/m~3. The sludge volume index of sludge formed in the SOABR reactor was 32 mL/g and in FICCO reactor it was 46 mL/g. The sludge formed in SOABR and FICCO reactor was characterized by TGA, DSC and SEM analysis. Overall, the results demonstrated that the integrated SOABR-FICCO reactors substantially removed the pollution parameters from domestic wastewater with minimum sludge production.  相似文献   

16.
The dairy sector is known to have significant local and global environmental impacts; but it also has proven renewable-energy generation potential. This paper analyzes a specific niche experiment in the Indian dairy industry, wherein cattle waste management is carried out by a multitude of stakeholders. These include the waste collectors, local technology adopters, research institutions, multilateral donor agencies, the Indian government, technology suppliers and operation and maintenance teams who have managed an uninterrupted 1 MWe energy production over the past 4 years. This analysis uses the sociotechnical regime framework to study the interaction of social, technological, economic and policy-related aspects relevant to the niche experiment. The analysis shows a potential to contribute to the development of two complementing regimes—one related to cooperative waste management and the other related to grid-connected renewable-energy-based electricity generation. Key factors for a successful development are not only a long-term financing protection through government subsidies to cover higher capital cost and a preferential tariff related to energy throughput, but also the adaptation of technology, the embedding in the local cooperative structure and the removal of regulatory barriers.  相似文献   

17.
To reduce the environmental burden of agriculture, suitable methods to comprehend and assess the impact on natural resources are needed. One of the methods considered is the life cycle assessment (LCA) method, which was used to assess the environmental impacts of 18 grassland farms in three different farming intensities — intensive, extensified, and organic — in the Allgäu region in southern Germany. Extensified and organic compared with intensive farms could reduce negative effects in the abiotic impact categories of energy use, global warming potential (GWP) and ground water mainly by renouncing mineral nitrogen fertilizer. Energy consumption of intensive farms was 19.1 GJ ha−1 and 2.7 GJ t−1 milk, of extensified and organic farms 8.7 and 5.9 GJ ha−1 along with 1.3 and 1.2 GJ t−1 milk, respectively. Global warming potential was 9.4, 7.0 and 6.3 CO2-equivalents ha−1 and 1.3, 1.0 and 1.3 CO2-equivalents t−1 milk for the intensive, extensified and organic farms, respectively. Acidification calculated in SO2-equivalents was high, but the extensified (119 kg SO2 ha−1) and the organic farms (107 kg SO2 ha−1) emit a lower amount compared with the intensive farms (136 kg SO2 ha−1). Eutrophication potential computed in PO4-equivalents was higher for intensive (54.2 kg PO4 ha−1) compared with extensified (31.2 kg PO4 ha−1) and organic farms (13.5 kg PO4 ha−1). Farmgate balances for N (80.1, 31.4 and 31.1 kg ha−1) and P (5.3, 4.5 and −2.3 kg ha−1) for intensive, extensified and organic farms, respectively, indicate the different impacts on ground and surface water quality. Analysing the impact categories biodiversity, landscape image and animal husbandry, organic farms had clear advantages in the indicators number of grassland species, grazing cattle, layout of farmstead and herd management, but indices in these categories showed a wide range and are partly independent of the farming system.  相似文献   

18.
Increasing use of poly crystalline diamond (PCD) inserts as cutting tools and wear parts is vividly seen in automobile, aerospace, marine and precision engineering applications. The PCD inserts undergo series of manufacturing processes such as: grinding that forms the required shape and polishing that gives a fine finish. These operations are not straight forward as PCD is extremely resistant to grinding and polishing. Single crystal diamond can easily be polished by choosing a direction of easy abrasion, but polishing a PCD imposes serious difficulties as the grains are randomly oriented. Prior research on polishing of PCD inserts includes electro discharge grinding (EDG), dynamic friction polishing and grinding by a vitrified bonded diamond wheel. The surface textures of PCD produced using an EDG process often contains: micro cavities, particle pullout, micro-grooves, chipped edges, cracks and gouch marks. While applying the dynamic friction polishing method the PCD material undergoes phase transformation and hence increased polishing rate was apparently seen. However the phase transformation of PCD deteriorates the strength of the insert. Furthermore the inserts produced using the dynamic polishing method often exhibits cracks, chip off and edge damage while using as a cutting tool. Therefore, a new method “aero-lap polishing” was attempted as it applies controlled amount of impinging force by which the surface damage can be significantly reduced. The study did establish an improvement of surface finish of PCD from Ra = 0.55 μm, Rt = 4.5 μm to Ra = 0.29 μm, Rt = 1.6 μm within 15–25 min of polishing time along with significant reduction in surface defects.  相似文献   

19.
Nitrous oxide (N2O) and ammonia (NH3) emissions from surface applied high (HN) and low (LN) nitrogen pig manures were measured under field conditions. Manures were band-spread to a winter wheat crop at three growth stages—mid-tillering, stem elongation and flag leaf emergence. The N2O flux rates were measured using the static chamber technique while NH3 volatilisation was assessed using a micrometeorological mass balance technique with passive flux samplers. The N2O emissions were episodic in nature with flux rates observed ranging from 2.8 to 31.5 g N2O–N ha?1 day?1 (P < 0.001). Higher N2O emissions generally occurred after rainfall events. Highest N2O losses were observed from the HN treatment with LN manure use decreasing emissions by 18% (P < 0.03). The NH3 volatilisation rates were highest within 1 h of manure application with 95% of emissions occurring within 24 h (P < 0.001). Cumulative N loss was highest at mid-tillering as low crop canopy cover and increased wind-speeds enhanced NH3 loss (P < 0.001). Highest emissions were measured from the HN manure (P < 0.03). Total ammoniacal N loss ranged from 6 to 11%. Crop N uptake and grain yield were unaffected by application timing or manure type. Therefore, the use of LN manures decreased gaseous emissions of N2O and NH3 without any adverse effects on crop performance.  相似文献   

20.
Heterogeneous photocatalytic oxidation is a water reclamation technology which avoids chemical consumption and can be powered by solar radiation. Because this generally sustainable process is of limited efficiency for the treatment of biologically pretreated greywater, it was combined with activated carbon adsorption. The effluent of a constructed wetland for treatment of separately collected greywater was subjected to photocatalytic oxidation using the photocatalyst titanium dioxide (TiO2) “P25” in both the absence and the presence of powdered activated carbon (PAC). Photocatalytic oxidation alone with UV fluences of about 10 Wh L?1 was not capable of reducing total organic carbon (TOC) from an initial concentration of 5.5 mg L?1 safely below 2 mg L?1 as a prerequisite for high-quality water reuse purposes. However, when PAC was added, TOC concentrations subsequent to photocatalytic oxidation were less than 2 mg L?1 even after reusing the TiO2/PAC mixture 10 times. PAC addition is estimated to reduce the insolation area necessary to achieve this target by solar photocatalytic oxidation of biologically treated greywater by a factor 7. This combination process represents an innovative chemical-free technology within wastewater reuse schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号