首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
大冶湖表层沉积物-水中多环芳烃的分布、来源及风险评价   总被引:15,自引:13,他引:2  
于2015年8月采集大冶湖表层沉积物8个及上覆水样8个,使用GC-MS分析16种EPA优控PAHs.结果表明在表层沉积物及水体中ΣPAHs范围分别为:35.94~2 032.73 ng·g-1和27.94~242.95 ng·L~(-1),平均值分别为940.61 ng·g-1和107.77 ng·L~(-1);表层沉积物中PAHs分布呈现湖中高于岸边趋势,水体则呈大致相反趋势,表层沉积物中以4~5环高环化合物为主要组分,在水体中主要以2环以及4环和5环PAHs为主,与国内外其他湖泊相比处于中度污染水平;来源解析表明大冶湖表层沉积物及水体中多环芳烃主要来自于高温燃烧源,沉积物中PAHs高环分子都占据绝大部分,反映出了沉积物受矿冶冶炼长期累积污染的效应;所检测沉积物中各单体PAH及ΣPAHs含量均未超过ERM以及FEL,表明大冶湖表层沉积物中PAHs无潜在生态风险;终生致癌风险评价表明大冶湖水体中PAHs通过摄入和皮肤接触风险都处于USEPA推荐的可接受水平范围之内,但都高于瑞典环保局和英国皇家协会推荐的最大可接受风险水平,需要对7种致癌PAHs污染加以防治.  相似文献   

2.
郭雪  毕春娟  陈振楼  王薛平 《环境科学》2014,35(7):2664-2671
采用GC-MS联用技术分析了滴水湖及其水体交换区23个表层沉积物和土壤中16种多环芳烃(PAHs)的含量,探讨其分布特征及来源并对其生态风险进行评价.结果表明,滴水湖沉积物中16种PAHs含量范围是11.49~157.09 ng·g-1,平均含量为66.60 ng·g-1,湖区沉积物中PAHs含量比入湖区低,但比出湖区高.湖区外的沉积物和土壤中PAHs组成主要以中、高分子量PAHs(4环、5~6环)为主,而湖区内表层沉积物中PAHs组成则以低分子量PAHs(2~3环)和高分子量PAHs(5~6环)为主.通过特征化合物分子比值法、主成分分析及多元线性回归模型判源,表明湖区外沉积物和土壤中PAHs来源主要为燃烧源,而湖区内沉积物中PAHs来源为燃烧源和石油类产品泄漏的混合来源.生态风险评价显示,滴水湖及其水体交换区沉积物和土壤中PAHs生态风险较低.  相似文献   

3.
白洋淀多环芳烃与有机氯农药季节性污染特征及来源分析   总被引:1,自引:0,他引:1  
为研究白洋淀表层水体中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)和有机氯农药(organochlorine pesticides,OCPs)的季节性污染特征及来源,分析了白洋淀12个监测断面春、夏两季表层水体中17种PAHs和15种OCPs的浓度.结果表明,白洋淀春季表层水体中PAHs总浓度范围是35.38~88.06 ng·L~(-1),平均值为46.57 ng·L~(-1),夏季表层水体中PAHs总浓度范围是25.64~301.41 ng·L~(-1),平均值为76.23 ng·L~(-1);白洋淀春季表层水体中OCPs总浓度范围是0.69~4.50 ng·L~(-1),平均值为1.77 ng·L~(-1);夏季表层水体中OCPs总浓度范围是0.11~3.20 ng·L~(-1),平均值为0.90 ng·L~(-1).白洋淀春、夏两季表层水体中PAHs季节性污染特征表现为前塘、关城和安新桥等3个断面夏季PAHs总浓度要远高于春季,而其他9个断面则均表现为春季略高于夏季;OCPs季节性污染特征表现为关城断面夏季OCPs总浓度高于春季,而其他11个监测断面均表现为春季高于夏季.从白洋淀春、夏两季表层水体PAHs和OCPs组成特征来看,春季各监测断面PAHs主要以三环芳烃为主,占PAHs总浓度的比例为45.92%~61.36%(平均为52.60%);夏季安新桥、前塘和关城等3个监测断面主要以二环芳烃萘(Naphthalene,Nap)为主,其浓度分别占PAHs总浓度的比例高达84.91%、91.04%和78.10%,其他9个监测断面主要以三环芳烃为主,占PAHs总浓度的比例为37.14%~53.90%(平均为48.94%);白洋淀表层水体中只有HCHs和DDTs有不同程度检出,且呈现出以HCHs为主的污染特征,其中,春季各监测断面表层水体中HCHs均以β-HCH为主,占HCHs总浓度的29.94%~100%,平均比例为59.87%,而夏季大张庄、郭里口等5个监测断面表层水体中HCHs以β-HCH为主,占HCHs总浓度的57.55%~80.23%,平均比例为61.98%,其他断面以α-HCHs和δ-HCH为主.分析白洋淀春、夏两季表层水体中PAHs和OCPs的来源,PAHs同分异构体比值显示其PAHs主要来源于燃烧源,部分监测断面还存在石油源;而OCPs同分异构体比值显示其OCPs主要来源于环境残留和大气的长距离传输.白洋淀表层水体中PAHs和OCPs浓度不超过不同国家和组织制定的相关水质标准,但安新桥和圈头两个监测断面表层水体中α-HCH、p,p'-DDD浓度超过了美国环保署制定的人体健康水质基准,表明α-HCH和p,p'-DDD可能会对白洋淀淀区居民产生潜在有害影响.  相似文献   

4.
董磊  汤显强  林莉  郦超  黎睿  吴敏 《环境科学》2018,39(6):2588-2599
持久性有机污染物(POPs)在我国地表水和沉积物等环境介质中被广泛检出,对生态环境和人类健康具有潜在的风险.针对现阶段长江经济带核心区域(武汉段)POPs的污染状况信息严重缺乏的问题,本文以使用量较大且环境中检出高的PAHs和PAEs为研究对象,通过对2016年长江武汉段干流15个采样点丰水期水体和沉积物中16种PAHs和6种PAEs污染物含量水平、分布特征和污染来源的系统分析.结果表明,长江武汉段2016年丰水期水体和沉积物中ΣPAHs浓度分别为20.8~90.4 ng·L~(-1)(均值40.7 ng·L~(-1))和46.1~424.0 ng·g~(-1)(均值191.8 ng·g~(-1)),ΣPAEs浓度分别为280.9~779.0 ng·L~(-1)(均值538.6 ng·L~(-1))和1 346.2~7 641.1 ng·g~(-1)(均值3 699.5 ng·g~(-1)).PAHs和PAEs含量均低于国家地表水环境质量标准规定的限值,污染程度小.长江武汉段水体中PAHs以2~3环为主,沉积物中PAHs以2~3环和4环为主,水体和沉积物中PAEs以DEHP和DBP为主.基于比率及主成分分析,长江武汉段水体与沉积物中PAHs主要的来源为煤和生物质燃烧,以及石油来源;水体和沉积物中PAEs的主要来源于塑料和重化工工业,以及生活垃圾.水体及沉积物中两类典型POPs(PAHs和PAEs)对人类健康会产生潜在有害影响,需加强监控.研究成果可为长江(武汉段)环境保护提供基础数据和技术支撑.  相似文献   

5.
为探究典型岩溶槽谷区重庆青木关地下河流域水中多环芳烃(PAHs)的含量、组成、来源及污染特征,于2014年对青木关地下河流域中3种不同类型水体进行了连续7个月的采样监测,并利用气相色谱-质谱联用仪(GC-MS)测定了水中16种优控多环芳烃含量.结果表明,地下河水、表层岩溶泉水和地表水中∑PAHs含量变化范围分别为73.9~339.0、76.2~212.0和81.9~272.0 ng·L-1,平均值分别为134、138和173ng·L-1;PAHs组成以2~3环为主,平均占总含量的82%.通过对PAHs的组成对比分析表明,PAHs在迁移过程中地下环境介质对PAHs存在吸附作用.燃烧源是流域内水中PAHs的主要来源,PAHs污染水平较低,个别中低环PAHs含量超过水质标准,高环PAHs超标仅出现在2014年11月的地表水和地下河出口水样中.  相似文献   

6.
嘉陵江重庆段表层水体多环芳烃的污染特征   总被引:3,自引:4,他引:3  
蔡文良  罗固源  许晓毅  杜娴 《环境科学》2012,33(7):2341-2346
为了确定嘉陵江重庆段表层水体中多环芳烃(PAHs)的组成、来源及污染特征,于2009年8月采集了8个表层水样,利用GC-MS仪器测定了16种优先控制PAHs的浓度.结果表明,水体中16种优先控制PAHs浓度范围为467.13~987.97ng.L-1,平均浓度值为702.91 ng.L-1,水体PAHs浓度和溶解性有机碳(DOC)含量呈现明显的线性正相关.PAHs的组成以2~3环PAHs为主,占水体ΣPAHs总量的68.90%.寸滩区域水体PAHs主要来源于木材和煤的燃烧污染,朝天门区域水体PAHs主要来源于石油源,嘉陵江重庆段其他区域水体PAHs主要来源于液体石化燃料的燃烧.虽然嘉陵江重庆段整体污染水平较低,但是5个取样点的地表水苯并(a)芘(BaP)含量超过国家地表水质量标准.  相似文献   

7.
舟山近海水体和沉积物中多环芳烃分布特征   总被引:11,自引:6,他引:5  
2012年,每两个月采集1次浙江省舟山近海水样及表层沉积物样品,检测16种多环芳烃(PAHs)含量.结果表明,舟山近海水体和沉积物中PAHs均存在显著的时空差异性,水体ΣPAHs浓度范围为382.3~816.9 ng·L-1,平均值为552.5ng·L-1;沉积物ΣPAHs含量范围为1017.9~3047.1 ng·g-1,平均值为2022.4 ng·g-1.空间分布上,水体ΣPAHs最大值和最小值分别出现在小洋山和燕窝山海域,而沉积物中分别出现在小洋山和朱家尖南沙海域.时间变化上,水体ΣPAHs最大值和最小值出现在10月和6月,而沉积物中分别出现在8月和6月.PAHs污染来源主要是油类排放和木柴、煤燃烧的共同叠加作用.结合PAHs的生物阈值,利用超标系数法评价舟山近海PAHs的生态风险,结果表明,ΣPAHs存在较低几率的潜在风险,但苊单体存在较高几率的潜在风险,二氢苊和芴可能存在生态风险.对水-沉积物界面PAHs的富集研究表明,舟山近海沉积物中富集了大量PAHs,富集系数(Kd值)岱山岛大于舟山本岛,并与沉积物的PAHs含量分布一致.  相似文献   

8.
在新疆博斯腾湖及其上游采集了8个表层沉积物和1根湖心沉积柱样品,分析了其中16种多环芳烃(PAHs)的含量,对其时空分布特征、来源和潜在生态风险进行了研究,并采用~(210)Pb同位素测年法分析了沉积速率和沉积柱的时间跨度.结果表明:表层沉积物样品中PAHs含量范围为57.37~360.24 ng·g~(-1)(干重),开都河沉积物中PAHs以低分子量PAHs(2~3环)为主,博斯腾湖沉积物中PAHs以高分子量PAHs(4~6环)为主.开都河和博斯腾湖沉积物中萘(Nap)、菲(Phe)、苯并(b)荧蒽(BbF)和茚并(1, 2, 3-cd)芘(IP)等单体的含量较高.空间分布呈现出上游河流开都河高于博斯腾湖区,且湖区污染主要集中在湖心处的污染特征.沉积柱样品中15种PAHs含量范围为29.85~211.13 ng·g~(-1),沉积速率为0.18 cm·a~(-1),PAHs组成以5环和6环为主.沉积时间跨度为1852—2016年,PAHs含量峰值出现在1994年.采用比值法对表层沉积物和沉积柱样品进行源解析表明,博斯腾湖流域PAHs主要来源于生物质和煤热解过程,近年来有向煤炭和石油燃烧复合源转变的倾向.效应区间低/中值法(ERL/ERM)和平均效应区间中值商法(M-ERM-Q)评估结果表明,博斯腾湖及其上游表层沉积物中PAHs表现出低生态风险.  相似文献   

9.
滦河流域多环芳烃的污染特征、风险评价与来源辨析   总被引:14,自引:2,他引:12  
在滦河上、中、下游和河口地区布设了15个采样点,对滦河流域的河水和表层沉积物中多环芳烃(PAHs)进行了分析.结果表明,水中PAHs总量为9.8~310ng.L-1,表层沉积物中PAHs总量最高达478ng.g-1.城市地区河段中PAHs的浓度高于农村河段中PAHs的浓度,河口地区相对中游地区污染较轻.就组成特征而言,水中PAHs以3环(40.9%)、4环(56.2%)为主,表层沉积物中PAHs以3环(30.0%)、4环(39.3%)、5环(15.8%)为主.总的来讲,3环、4环PAHs是滦河流域PAHs最主要的成分.地表水健康风险评价结果显示,韩家营、瀑河口两个采样点苯并[a]芘(BaP)毒性当量值(EBaP)分别为11.8、11.4ng.L-1,超出中国国家环境保护部(CEPA)制定的EBaP=2.8ng.L-1的国家标准,存在不利的健康风险.表层沉积物生态风险评价结果显示,韩家营、上板城、乌龙矶地区的PAHs可能存在着对生物的潜在危害,剩余研究区域不存在生态风险.滦河水和表层沉积物PAHs主要表现为以草、木柴和煤燃烧来源为主的特征,部分样点存在燃油与木柴、煤燃烧的混合来源特征.瀑河口、大黑汀受石油源污染影响明显.  相似文献   

10.
舟山青浜岛不同环境介质中PAHs的分布特征   总被引:2,自引:2,他引:0  
于2013年7月在青浜岛上采集11个土壤样品、3个大气被动采样样品以及周边3个海水样品,分析了样品中16种多环芳烃(PAHs)的含量,并对其分布特征、来源、生态风险进行了讨论.结果表明,土壤、海水和大气中Σ16PAHs的含量范围分别为60.30~123.34 ng·g-1(平均值为105.49 ng·g-1)、45.96~101.08 ng·L-1(平均值为66.45 ng·L-1)和5.09~5.41ng·d-1(平均值为5.35 ng·d-1).分布特征为:潮汐带土壤中PAHs含量低于非潮汐带;3个海水样中,以靠近水文条件复杂的海域内样品中的PAHs含量最高;岛上大气中PAHs分布均匀.土壤、海水和大气中PAHs主要以2~4环的PAHs为主;通过比值法和因子分析得出,青浜岛土壤中的PAHs来源于煤、木炭等生物质燃烧以及柴油、汽油的燃烧,海水和大气中的PAHs来源于混合源.生态风险评价结果表明青浜岛土壤和周边海水中PAHs生态风险较低.  相似文献   

11.
室内空气污染状况日趋严重,会形成几种危害人体的症状,已成为对人类健康的10大威胁之一。室内空气污染主要来自装饰材料、家具和建筑物自身、室外污染物、燃烧产物和人体挥发等因素也不容忽视。应注重现代住宅的5项卫生标准加以防治。  相似文献   

12.
浅谈铁路噪声污染的治理   总被引:2,自引:0,他引:2  
铁路噪声包括机车辆辐射的稳态噪声和列车运动有亲的间歇声。综合铁路噪声的声级分析,在北京,天津,上海和昆明,铁路噪声的平均值分别为70、71、72和68dB(A)为治理铁路噪声,除对新建铁路作好规划外,对既有铁路应采取加强声源控制,改善线路结构,提高机车质量,设置档声屏障和种植隔离林带等措施。  相似文献   

13.
本文从噪声、放射性和电磁辐射三个方面对物理性污染的来源及其危害作了详尽的阐述,指出了物理性污染的形成及其诱发疾病的常见症状,提醒人们在日常生活中注意对物理性污染的防范。  相似文献   

14.
通过对受铜、锌污染的河流水样、底泥、土壤及植物进行采样分析,结果表明:选矿废水对河流水质造成较严重的铜、锌污染,铜超过地面水Ⅳ、Ⅴ类标准和污水综合排放一级标准,锌超过地面水Ⅱ、Ⅲ类标准,河流底泥中铜、锌严重超标。生长于污染水体中的植物,其铜、锌含量显著地高于对照植物,即植物污染严重。在几种试样植物中,紫茎泽兰铜、锌含量最高,其次是光叶蕨。此外,研究表明,污染植物铜、锌具有高度相关性。  相似文献   

15.
云南空气中TSP的现状与控制   总被引:1,自引:1,他引:1  
云南省1990 ̄1996年17个城镇的TSP污染水平一直在0.20mg/m^3左右波动,比较平稳。将年平均浓度值与超标率相比较,历年来TSP的污染程度变化不大,但污染面有逐年扩大的趋势。因此,为提高空气质量达标率,必须加强管理和技术方面的措施。  相似文献   

16.
在连续三年监测数据基础上,用单项污染指数,综合污染指数和污染负荷分担率及历史数据均值偏差估算等方法,对五个监测断面的污染状况进行评价,得出科学的评价结论.  相似文献   

17.
研究了中国北方某流域不同污染源的污染贡献,结果表明:COD贡献量点源为719.21 t,农业面源污染为7 488.02 t,农业面源污染是该流域水环境污染的主要来源.农业面源污染物等标污染负荷总量为8 359.44×106 m3/a.不同污染源污染贡献比例:农田化肥占49.24%、畜禽养殖占35.10%、农村生活占14.69%、农作物秸秆仅占0.97%.污染物贡献量比例.TN占56.46%、TP占39.06%、COD仅占4.48%.  相似文献   

18.
滇池面源污染及其综合治理   总被引:15,自引:0,他引:15  
滇池面源污染物主要是N、P、COD和BOD5,来源于水土流失、湖面直接进入、地表径流、农田不合理施肥以及农村生活废弃物及乡镇企业污染。应通过小流域治理、发展生态农业和修沿湖污工程进一步加以治理。  相似文献   

19.
人类进入新世纪,开始越来越认识到环境对我们的重要性,尤其对与我们朝夕相处的室内环境污染与安全问题.文章从环境安全的概念以及环境安全的重要性出发,提出了现在正被中国政府、社会和人们陪受关注的与人类健康和生命安全息息相关的室内环境安全问题,并从室内空气污染、噪声污染、电磁辐射污染、水污染、光污染、固本废物污染、房屋设计、选址等多方面多角度综述了室内环境污染问题及对人体产生的危害,并提出了相应的防治措施.  相似文献   

20.
随着新型工业化的发展,污染治理已实现了从单纯的末端治理向在生产过程中治理转变的跨越式发展。但新的环境问题如消费废弃物污染的面更广,内容更多和高新技术污染等相继出现。这些污染应引起人们的广泛关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号